Metamath Proof Explorer


Theorem evls1addd

Description: Univariate polynomial evaluation of a sum of polynomials. (Contributed by Thierry Arnoux, 8-Feb-2025)

Ref Expression
Hypotheses ressply1evl.q Q=SevalSub1R
ressply1evl.k K=BaseS
ressply1evl.w W=Poly1U
ressply1evl.u U=S𝑠R
ressply1evl.b B=BaseW
evls1addd.1 ˙=+W
evls1addd.2 +˙=+S
evls1addd.s φSCRing
evls1addd.r φRSubRingS
evls1addd.m φMB
evls1addd.n φNB
evls1addd.y φCK
Assertion evls1addd φQM˙NC=QMC+˙QNC

Proof

Step Hyp Ref Expression
1 ressply1evl.q Q=SevalSub1R
2 ressply1evl.k K=BaseS
3 ressply1evl.w W=Poly1U
4 ressply1evl.u U=S𝑠R
5 ressply1evl.b B=BaseW
6 evls1addd.1 ˙=+W
7 evls1addd.2 +˙=+S
8 evls1addd.s φSCRing
9 evls1addd.r φRSubRingS
10 evls1addd.m φMB
11 evls1addd.n φNB
12 evls1addd.y φCK
13 id φφ
14 eqid Poly1S=Poly1S
15 eqid Poly1S𝑠B=Poly1S𝑠B
16 14 4 3 5 9 15 ressply1add φMBNBM+WN=M+Poly1S𝑠BN
17 13 10 11 16 syl12anc φM+WN=M+Poly1S𝑠BN
18 6 oveqi M˙N=M+WN
19 5 fvexi BV
20 eqid +Poly1S=+Poly1S
21 15 20 ressplusg BV+Poly1S=+Poly1S𝑠B
22 19 21 ax-mp +Poly1S=+Poly1S𝑠B
23 22 oveqi M+Poly1SN=M+Poly1S𝑠BN
24 17 18 23 3eqtr4g φM˙N=M+Poly1SN
25 24 fveq2d φeval1SM˙N=eval1SM+Poly1SN
26 25 fveq1d φeval1SM˙NC=eval1SM+Poly1SNC
27 eqid eval1S=eval1S
28 1 2 3 4 5 27 8 9 ressply1evl φQ=eval1SB
29 28 fveq1d φQM˙N=eval1SBM˙N
30 4 subrgring RSubRingSURing
31 3 ply1ring URingWRing
32 9 30 31 3syl φWRing
33 32 ringgrpd φWGrp
34 5 6 33 10 11 grpcld φM˙NB
35 34 fvresd φeval1SBM˙N=eval1SM˙N
36 29 35 eqtr2d φeval1SM˙N=QM˙N
37 36 fveq1d φeval1SM˙NC=QM˙NC
38 eqid BasePoly1S=BasePoly1S
39 eqid PwSer1U=PwSer1U
40 eqid BasePwSer1U=BasePwSer1U
41 14 4 3 5 9 39 40 38 ressply1bas2 φB=BasePwSer1UBasePoly1S
42 inss2 BasePwSer1UBasePoly1SBasePoly1S
43 41 42 eqsstrdi φBBasePoly1S
44 43 10 sseldd φMBasePoly1S
45 28 fveq1d φQM=eval1SBM
46 10 fvresd φeval1SBM=eval1SM
47 45 46 eqtr2d φeval1SM=QM
48 47 fveq1d φeval1SMC=QMC
49 44 48 jca φMBasePoly1Seval1SMC=QMC
50 43 11 sseldd φNBasePoly1S
51 28 fveq1d φQN=eval1SBN
52 11 fvresd φeval1SBN=eval1SN
53 51 52 eqtr2d φeval1SN=QN
54 53 fveq1d φeval1SNC=QNC
55 50 54 jca φNBasePoly1Seval1SNC=QNC
56 27 14 2 38 8 12 49 55 20 7 evl1addd φM+Poly1SNBasePoly1Seval1SM+Poly1SNC=QMC+˙QNC
57 56 simprd φeval1SM+Poly1SNC=QMC+˙QNC
58 26 37 57 3eqtr3d φQM˙NC=QMC+˙QNC