Description: Univariate polynomial evaluation of a sum of polynomials. (Contributed by Thierry Arnoux, 8-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ressply1evl.q | |
|
ressply1evl.k | |
||
ressply1evl.w | |
||
ressply1evl.u | |
||
ressply1evl.b | |
||
evls1addd.1 | |
||
evls1addd.2 | |
||
evls1addd.s | |
||
evls1addd.r | |
||
evls1addd.m | |
||
evls1addd.n | |
||
evls1addd.y | |
||
Assertion | evls1addd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressply1evl.q | |
|
2 | ressply1evl.k | |
|
3 | ressply1evl.w | |
|
4 | ressply1evl.u | |
|
5 | ressply1evl.b | |
|
6 | evls1addd.1 | |
|
7 | evls1addd.2 | |
|
8 | evls1addd.s | |
|
9 | evls1addd.r | |
|
10 | evls1addd.m | |
|
11 | evls1addd.n | |
|
12 | evls1addd.y | |
|
13 | id | |
|
14 | eqid | |
|
15 | eqid | |
|
16 | 14 4 3 5 9 15 | ressply1add | |
17 | 13 10 11 16 | syl12anc | |
18 | 6 | oveqi | |
19 | 5 | fvexi | |
20 | eqid | |
|
21 | 15 20 | ressplusg | |
22 | 19 21 | ax-mp | |
23 | 22 | oveqi | |
24 | 17 18 23 | 3eqtr4g | |
25 | 24 | fveq2d | |
26 | 25 | fveq1d | |
27 | eqid | |
|
28 | 1 2 3 4 5 27 8 9 | ressply1evl | |
29 | 28 | fveq1d | |
30 | 4 | subrgring | |
31 | 3 | ply1ring | |
32 | 9 30 31 | 3syl | |
33 | 32 | ringgrpd | |
34 | 5 6 33 10 11 | grpcld | |
35 | 34 | fvresd | |
36 | 29 35 | eqtr2d | |
37 | 36 | fveq1d | |
38 | eqid | |
|
39 | eqid | |
|
40 | eqid | |
|
41 | 14 4 3 5 9 39 40 38 | ressply1bas2 | |
42 | inss2 | |
|
43 | 41 42 | eqsstrdi | |
44 | 43 10 | sseldd | |
45 | 28 | fveq1d | |
46 | 10 | fvresd | |
47 | 45 46 | eqtr2d | |
48 | 47 | fveq1d | |
49 | 44 48 | jca | |
50 | 43 11 | sseldd | |
51 | 28 | fveq1d | |
52 | 11 | fvresd | |
53 | 51 52 | eqtr2d | |
54 | 53 | fveq1d | |
55 | 50 54 | jca | |
56 | 27 14 2 38 8 12 49 55 20 7 | evl1addd | |
57 | 56 | simprd | |
58 | 26 37 57 | 3eqtr3d | |