Metamath Proof Explorer


Theorem ex-ind-dvds

Description: Example of a proof by induction (divisibility result). (Contributed by Stanislas Polu, 9-Mar-2020) (Revised by BJ, 24-Mar-2020)

Ref Expression
Assertion ex-ind-dvds N034N+2

Proof

Step Hyp Ref Expression
1 oveq2 k=04k=40
2 1 oveq1d k=04k+2=40+2
3 2 breq2d k=034k+2340+2
4 oveq2 k=n4k=4n
5 4 oveq1d k=n4k+2=4n+2
6 5 breq2d k=n34k+234n+2
7 oveq2 k=n+14k=4n+1
8 7 oveq1d k=n+14k+2=4n+1+2
9 8 breq2d k=n+134k+234n+1+2
10 oveq2 k=N4k=4N
11 10 oveq1d k=N4k+2=4N+2
12 11 breq2d k=N34k+234N+2
13 3z 3
14 iddvds 333
15 13 14 ax-mp 33
16 4nn0 40
17 16 numexp0 40=1
18 17 oveq1i 40+2=1+2
19 1p2e3 1+2=3
20 18 19 eqtri 40+2=3
21 15 20 breqtrri 340+2
22 13 a1i n034n+23
23 16 a1i n034n+240
24 simpl n034n+2n0
25 23 24 nn0expcld n034n+24n0
26 25 nn0zd n034n+24n
27 2z 2
28 27 a1i n034n+22
29 26 28 zaddcld n034n+24n+2
30 4z 4
31 30 a1i n034n+24
32 29 31 zmulcld n034n+24n+24
33 22 28 zmulcld n034n+232
34 16 a1i n040
35 id n0n0
36 34 35 nn0expcld n04n0
37 36 nn0zd n04n
38 37 adantr n034n+24n
39 38 28 zaddcld n034n+24n+2
40 simpr n034n+234n+2
41 22 39 31 40 dvdsmultr1d n034n+234n+24
42 dvdsmul1 32332
43 13 27 42 mp2an 332
44 43 a1i n034n+2332
45 22 32 33 41 44 dvds2subd n034n+234n+2432
46 36 nn0cnd n04n
47 2cnd n02
48 4cn 4
49 48 a1i n04
50 46 47 49 adddird n04n+24=4n4+24
51 50 oveq1d n04n+2423=4n4+24-23
52 3cn 3
53 2cn 2
54 52 53 mulcomi 32=23
55 54 a1i n032=23
56 55 oveq2d n04n+2432=4n+2423
57 49 35 expp1d n04n+1=4n4
58 ax-1cn 1
59 3p1e4 3+1=4
60 52 58 59 addcomli 1+3=4
61 60 eqcomi 4=1+3
62 58 52 61 mvrraddi 43=1
63 62 oveq2i 243=21
64 53 48 52 subdii 243=2423
65 2t1e2 21=2
66 63 64 65 3eqtr3ri 2=2423
67 66 a1i n02=2423
68 57 67 oveq12d n04n+1+2=4n4+24-23
69 46 49 mulcld n04n4
70 47 49 mulcld n024
71 52 a1i n03
72 47 71 mulcld n023
73 69 70 72 addsubassd n04n4+24-23=4n4+24-23
74 68 73 eqtr4d n04n+1+2=4n4+24-23
75 51 56 74 3eqtr4rd n04n+1+2=4n+2432
76 75 adantr n034n+24n+1+2=4n+2432
77 45 76 breqtrrd n034n+234n+1+2
78 77 ex n034n+234n+1+2
79 3 6 9 12 21 78 nn0ind N034N+2