Metamath Proof Explorer


Theorem expnngt1

Description: If an integer power with a positive integer base is greater than 1, then the exponent is positive. (Contributed by AV, 28-Dec-2022)

Ref Expression
Assertion expnngt1 AB1<ABB

Proof

Step Hyp Ref Expression
1 elznn BBBB0
2 2a1 BA1<ABB
3 2 a1d BBA1<ABB
4 nncn AA
5 4 3ad2ant3 B0BAA
6 recn BB
7 6 3ad2ant2 B0BAB
8 simp1 B0BAB0
9 expneg2 ABB0AB=1AB
10 5 7 8 9 syl3anc B0BAAB=1AB
11 10 breq2d B0BA1<AB1<1AB
12 nnre AA
13 reexpcl AB0AB
14 12 13 sylan AB0AB
15 14 ancoms B0AAB
16 12 adantl B0AA
17 nn0z B0B
18 17 adantr B0AB
19 nngt0 A0<A
20 19 adantl B0A0<A
21 expgt0 AB0<A0<AB
22 16 18 20 21 syl3anc B0A0<AB
23 15 22 jca B0AAB0<AB
24 23 3adant2 B0BAAB0<AB
25 reclt1 AB0<ABAB<11<1AB
26 24 25 syl B0BAAB<11<1AB
27 12 3ad2ant3 B0BAA
28 nnge1 A1A
29 28 3ad2ant3 B0BA1A
30 27 8 29 expge1d B0BA1AB
31 1red B0BA1
32 15 3adant2 B0BAAB
33 31 32 lenltd B0BA1AB¬AB<1
34 pm2.21 ¬AB<1AB<1B
35 33 34 syl6bi B0BA1ABAB<1B
36 30 35 mpd B0BAAB<1B
37 26 36 sylbird B0BA1<1ABB
38 11 37 sylbid B0BA1<ABB
39 38 3exp B0BA1<ABB
40 3 39 jaoi BB0BA1<ABB
41 40 impcom BBB0A1<ABB
42 1 41 sylbi BA1<ABB
43 42 3imp21 AB1<ABB