Metamath Proof Explorer


Theorem f1opw2

Description: A one-to-one mapping induces a one-to-one mapping on power sets. This version of f1opw avoids the Axiom of Replacement. (Contributed by Mario Carneiro, 26-Jun-2015)

Ref Expression
Hypotheses f1opw2.1 φF:A1-1 ontoB
f1opw2.2 φF-1aV
f1opw2.3 φFbV
Assertion f1opw2 φb𝒫AFb:𝒫A1-1 onto𝒫B

Proof

Step Hyp Ref Expression
1 f1opw2.1 φF:A1-1 ontoB
2 f1opw2.2 φF-1aV
3 f1opw2.3 φFbV
4 eqid b𝒫AFb=b𝒫AFb
5 imassrn FbranF
6 f1ofo F:A1-1 ontoBF:AontoB
7 1 6 syl φF:AontoB
8 forn F:AontoBranF=B
9 7 8 syl φranF=B
10 5 9 sseqtrid φFbB
11 3 10 elpwd φFb𝒫B
12 11 adantr φb𝒫AFb𝒫B
13 imassrn F-1aranF-1
14 dfdm4 domF=ranF-1
15 f1odm F:A1-1 ontoBdomF=A
16 1 15 syl φdomF=A
17 14 16 eqtr3id φranF-1=A
18 13 17 sseqtrid φF-1aA
19 2 18 elpwd φF-1a𝒫A
20 19 adantr φa𝒫BF-1a𝒫A
21 elpwi a𝒫BaB
22 21 adantl b𝒫Aa𝒫BaB
23 foimacnv F:AontoBaBFF-1a=a
24 7 22 23 syl2an φb𝒫Aa𝒫BFF-1a=a
25 24 eqcomd φb𝒫Aa𝒫Ba=FF-1a
26 imaeq2 b=F-1aFb=FF-1a
27 26 eqeq2d b=F-1aa=Fba=FF-1a
28 25 27 syl5ibrcom φb𝒫Aa𝒫Bb=F-1aa=Fb
29 f1of1 F:A1-1 ontoBF:A1-1B
30 1 29 syl φF:A1-1B
31 elpwi b𝒫AbA
32 31 adantr b𝒫Aa𝒫BbA
33 f1imacnv F:A1-1BbAF-1Fb=b
34 30 32 33 syl2an φb𝒫Aa𝒫BF-1Fb=b
35 34 eqcomd φb𝒫Aa𝒫Bb=F-1Fb
36 imaeq2 a=FbF-1a=F-1Fb
37 36 eqeq2d a=Fbb=F-1ab=F-1Fb
38 35 37 syl5ibrcom φb𝒫Aa𝒫Ba=Fbb=F-1a
39 28 38 impbid φb𝒫Aa𝒫Bb=F-1aa=Fb
40 4 12 20 39 f1o2d φb𝒫AFb:𝒫A1-1 onto𝒫B