Metamath Proof Explorer


Theorem facavg

Description: The product of two factorials is greater than or equal to the factorial of (the floor of) their average. (Contributed by NM, 9-Dec-2005)

Ref Expression
Assertion facavg M0N0M+N2!M!N!

Proof

Step Hyp Ref Expression
1 nn0readdcl M0N0M+N
2 1 rehalfcld M0N0M+N2
3 flle M+N2M+N2M+N2
4 2 3 syl M0N0M+N2M+N2
5 reflcl M+N2M+N2
6 2 5 syl M0N0M+N2
7 nn0re M0M
8 7 adantr M0N0M
9 letr M+N2M+N2MM+N2M+N2M+N2MM+N2M
10 6 2 8 9 syl3anc M0N0M+N2M+N2M+N2MM+N2M
11 4 10 mpand M0N0M+N2MM+N2M
12 nn0addcl M0N0M+N0
13 12 nn0ge0d M0N00M+N
14 halfnneg2 M+N0M+N0M+N2
15 1 14 syl M0N00M+N0M+N2
16 13 15 mpbid M0N00M+N2
17 flge0nn0 M+N20M+N2M+N20
18 2 16 17 syl2anc M0N0M+N20
19 simpl M0N0M0
20 facwordi M+N20M0M+N2MM+N2!M!
21 20 3exp M+N20M0M+N2MM+N2!M!
22 18 19 21 sylc M0N0M+N2MM+N2!M!
23 faccl M0M!
24 23 nncnd M0M!
25 24 mulridd M0M!1=M!
26 25 adantr M0N0M!1=M!
27 faccl N0N!
28 27 nnred N0N!
29 28 adantl M0N0N!
30 23 nnred M0M!
31 23 nnnn0d M0M!0
32 31 nn0ge0d M00M!
33 30 32 jca M0M!0M!
34 33 adantr M0N0M!0M!
35 27 nnge1d N01N!
36 35 adantl M0N01N!
37 1re 1
38 lemul2a 1N!M!0M!1N!M!1M!N!
39 37 38 mp3anl1 N!M!0M!1N!M!1M!N!
40 29 34 36 39 syl21anc M0N0M!1M!N!
41 26 40 eqbrtrrd M0N0M!M!N!
42 18 faccld M0N0M+N2!
43 42 nnred M0N0M+N2!
44 30 adantr M0N0M!
45 remulcl M!N!M!N!
46 30 28 45 syl2an M0N0M!N!
47 letr M+N2!M!M!N!M+N2!M!M!M!N!M+N2!M!N!
48 43 44 46 47 syl3anc M0N0M+N2!M!M!M!N!M+N2!M!N!
49 41 48 mpan2d M0N0M+N2!M!M+N2!M!N!
50 11 22 49 3syld M0N0M+N2MM+N2!M!N!
51 nn0re N0N
52 51 adantl M0N0N
53 letr M+N2M+N2NM+N2M+N2M+N2NM+N2N
54 6 2 52 53 syl3anc M0N0M+N2M+N2M+N2NM+N2N
55 4 54 mpand M0N0M+N2NM+N2N
56 simpr M0N0N0
57 facwordi M+N20N0M+N2NM+N2!N!
58 57 3exp M+N20N0M+N2NM+N2!N!
59 18 56 58 sylc M0N0M+N2NM+N2!N!
60 27 nncnd N0N!
61 60 mullidd N01N!=N!
62 61 adantl M0N01N!=N!
63 27 nnnn0d N0N!0
64 63 nn0ge0d N00N!
65 28 64 jca N0N!0N!
66 65 adantl M0N0N!0N!
67 23 nnge1d M01M!
68 67 adantr M0N01M!
69 lemul1a 1M!N!0N!1M!1N!M!N!
70 37 69 mp3anl1 M!N!0N!1M!1N!M!N!
71 44 66 68 70 syl21anc M0N01N!M!N!
72 62 71 eqbrtrrd M0N0N!M!N!
73 letr M+N2!N!M!N!M+N2!N!N!M!N!M+N2!M!N!
74 43 29 46 73 syl3anc M0N0M+N2!N!N!M!N!M+N2!M!N!
75 72 74 mpan2d M0N0M+N2!N!M+N2!M!N!
76 55 59 75 3syld M0N0M+N2NM+N2!M!N!
77 avgle MNM+N2MM+N2N
78 7 51 77 syl2an M0N0M+N2MM+N2N
79 50 76 78 mpjaod M0N0M+N2!M!N!