Description: The factor theorem and its converse. A polynomial F has a root at A iff G = x - A is a factor of F . (Contributed by Mario Carneiro, 12-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ply1rem.p | |
|
ply1rem.b | |
||
ply1rem.k | |
||
ply1rem.x | |
||
ply1rem.m | |
||
ply1rem.a | |
||
ply1rem.g | |
||
ply1rem.o | |
||
ply1rem.1 | |
||
ply1rem.2 | |
||
ply1rem.3 | |
||
ply1rem.4 | |
||
facth1.z | |
||
facth1.d | |
||
Assertion | facth1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1rem.p | |
|
2 | ply1rem.b | |
|
3 | ply1rem.k | |
|
4 | ply1rem.x | |
|
5 | ply1rem.m | |
|
6 | ply1rem.a | |
|
7 | ply1rem.g | |
|
8 | ply1rem.o | |
|
9 | ply1rem.1 | |
|
10 | ply1rem.2 | |
|
11 | ply1rem.3 | |
|
12 | ply1rem.4 | |
|
13 | facth1.z | |
|
14 | facth1.d | |
|
15 | nzrring | |
|
16 | 9 15 | syl | |
17 | eqid | |
|
18 | eqid | |
|
19 | 1 2 3 4 5 6 7 8 9 10 11 17 18 13 | ply1remlem | |
20 | 19 | simp1d | |
21 | eqid | |
|
22 | 21 17 | mon1puc1p | |
23 | 16 20 22 | syl2anc | |
24 | eqid | |
|
25 | eqid | |
|
26 | 1 14 2 21 24 25 | dvdsr1p | |
27 | 16 12 23 26 | syl3anc | |
28 | 1 2 3 4 5 6 7 8 9 10 11 12 25 | ply1rem | |
29 | 1 6 13 24 | ply1scl0 | |
30 | 16 29 | syl | |
31 | 30 | eqcomd | |
32 | 28 31 | eqeq12d | |
33 | 1 6 3 2 | ply1sclf1 | |
34 | 16 33 | syl | |
35 | 8 1 3 2 10 11 12 | fveval1fvcl | |
36 | 3 13 | ring0cl | |
37 | 16 36 | syl | |
38 | f1fveq | |
|
39 | 34 35 37 38 | syl12anc | |
40 | 27 32 39 | 3bitrd | |