Metamath Proof Explorer


Theorem facth1

Description: The factor theorem and its converse. A polynomial F has a root at A iff G = x - A is a factor of F . (Contributed by Mario Carneiro, 12-Jun-2015)

Ref Expression
Hypotheses ply1rem.p P=Poly1R
ply1rem.b B=BaseP
ply1rem.k K=BaseR
ply1rem.x X=var1R
ply1rem.m -˙=-P
ply1rem.a A=algScP
ply1rem.g G=X-˙AN
ply1rem.o O=eval1R
ply1rem.1 φRNzRing
ply1rem.2 φRCRing
ply1rem.3 φNK
ply1rem.4 φFB
facth1.z 0˙=0R
facth1.d ˙=rP
Assertion facth1 φG˙FOFN=0˙

Proof

Step Hyp Ref Expression
1 ply1rem.p P=Poly1R
2 ply1rem.b B=BaseP
3 ply1rem.k K=BaseR
4 ply1rem.x X=var1R
5 ply1rem.m -˙=-P
6 ply1rem.a A=algScP
7 ply1rem.g G=X-˙AN
8 ply1rem.o O=eval1R
9 ply1rem.1 φRNzRing
10 ply1rem.2 φRCRing
11 ply1rem.3 φNK
12 ply1rem.4 φFB
13 facth1.z 0˙=0R
14 facth1.d ˙=rP
15 nzrring RNzRingRRing
16 9 15 syl φRRing
17 eqid Monic1pR=Monic1pR
18 eqid deg1R=deg1R
19 1 2 3 4 5 6 7 8 9 10 11 17 18 13 ply1remlem φGMonic1pRdeg1RG=1OG-10˙=N
20 19 simp1d φGMonic1pR
21 eqid Unic1pR=Unic1pR
22 21 17 mon1puc1p RRingGMonic1pRGUnic1pR
23 16 20 22 syl2anc φGUnic1pR
24 eqid 0P=0P
25 eqid rem1pR=rem1pR
26 1 14 2 21 24 25 dvdsr1p RRingFBGUnic1pRG˙FFrem1pRG=0P
27 16 12 23 26 syl3anc φG˙FFrem1pRG=0P
28 1 2 3 4 5 6 7 8 9 10 11 12 25 ply1rem φFrem1pRG=AOFN
29 1 6 13 24 ply1scl0 RRingA0˙=0P
30 16 29 syl φA0˙=0P
31 30 eqcomd φ0P=A0˙
32 28 31 eqeq12d φFrem1pRG=0PAOFN=A0˙
33 1 6 3 2 ply1sclf1 RRingA:K1-1B
34 16 33 syl φA:K1-1B
35 8 1 3 2 10 11 12 fveval1fvcl φOFNK
36 3 13 ring0cl RRing0˙K
37 16 36 syl φ0˙K
38 f1fveq A:K1-1BOFNK0˙KAOFN=A0˙OFN=0˙
39 34 35 37 38 syl12anc φAOFN=A0˙OFN=0˙
40 27 32 39 3bitrd φG˙FOFN=0˙