| Step |
Hyp |
Ref |
Expression |
| 1 |
|
brdomi |
|
| 2 |
1
|
adantl |
|
| 3 |
|
reldom |
|
| 4 |
3
|
brrelex2i |
|
| 5 |
|
omelon2 |
|
| 6 |
5
|
ad2antlr |
|
| 7 |
|
pwexg |
|
| 8 |
7
|
ad2antrr |
|
| 9 |
|
inex1g |
|
| 10 |
8 9
|
syl |
|
| 11 |
|
difss |
|
| 12 |
|
ssdomg |
|
| 13 |
10 11 12
|
mpisyl |
|
| 14 |
|
f1f1orn |
|
| 15 |
14
|
adantl |
|
| 16 |
|
f1opwfi |
|
| 17 |
15 16
|
syl |
|
| 18 |
|
f1oeng |
|
| 19 |
10 17 18
|
syl2anc |
|
| 20 |
|
pwexg |
|
| 21 |
20
|
ad2antlr |
|
| 22 |
|
inex1g |
|
| 23 |
21 22
|
syl |
|
| 24 |
|
f1f |
|
| 25 |
24
|
frnd |
|
| 26 |
25
|
adantl |
|
| 27 |
26
|
sspwd |
|
| 28 |
27
|
ssrind |
|
| 29 |
|
ssdomg |
|
| 30 |
23 28 29
|
sylc |
|
| 31 |
|
sneq |
|
| 32 |
|
pweq |
|
| 33 |
31 32
|
xpeq12d |
|
| 34 |
33
|
cbviunv |
|
| 35 |
|
iuneq1 |
|
| 36 |
34 35
|
eqtrid |
|
| 37 |
36
|
fveq2d |
|
| 38 |
37
|
cbvmptv |
|
| 39 |
38
|
ackbij1 |
|
| 40 |
|
f1oeng |
|
| 41 |
23 39 40
|
sylancl |
|
| 42 |
|
domentr |
|
| 43 |
30 41 42
|
syl2anc |
|
| 44 |
|
endomtr |
|
| 45 |
19 43 44
|
syl2anc |
|
| 46 |
|
domtr |
|
| 47 |
13 45 46
|
syl2anc |
|
| 48 |
|
ondomen |
|
| 49 |
6 47 48
|
syl2anc |
|
| 50 |
|
eqid |
|
| 51 |
50
|
fifo |
|
| 52 |
51
|
ad2antrr |
|
| 53 |
|
fodomnum |
|
| 54 |
49 52 53
|
sylc |
|
| 55 |
|
domtr |
|
| 56 |
54 47 55
|
syl2anc |
|
| 57 |
56
|
ex |
|
| 58 |
57
|
exlimdv |
|
| 59 |
4 58
|
sylan2 |
|
| 60 |
2 59
|
mpd |
|
| 61 |
60
|
ex |
|
| 62 |
|
fvex |
|
| 63 |
|
ssfii |
|
| 64 |
|
ssdomg |
|
| 65 |
62 63 64
|
mpsyl |
|
| 66 |
|
domtr |
|
| 67 |
66
|
ex |
|
| 68 |
65 67
|
syl |
|
| 69 |
61 68
|
impbid |
|