Metamath Proof Explorer


Theorem fictb

Description: A set is countable iff its collection of finite intersections is countable. (Contributed by Jeff Hankins, 24-Aug-2009) (Proof shortened by Mario Carneiro, 17-May-2015)

Ref Expression
Assertion fictb ABAωfiAω

Proof

Step Hyp Ref Expression
1 brdomi Aωff:A1-1ω
2 1 adantl ABAωff:A1-1ω
3 reldom Rel
4 3 brrelex2i AωωV
5 omelon2 ωVωOn
6 5 ad2antlr ABωVf:A1-1ωωOn
7 pwexg AB𝒫AV
8 7 ad2antrr ABωVf:A1-1ω𝒫AV
9 inex1g 𝒫AV𝒫AFinV
10 8 9 syl ABωVf:A1-1ω𝒫AFinV
11 difss 𝒫AFin𝒫AFin
12 ssdomg 𝒫AFinV𝒫AFin𝒫AFin𝒫AFin𝒫AFin
13 10 11 12 mpisyl ABωVf:A1-1ω𝒫AFin𝒫AFin
14 f1f1orn f:A1-1ωf:A1-1 ontoranf
15 14 adantl ABωVf:A1-1ωf:A1-1 ontoranf
16 f1opwfi f:A1-1 ontoranfx𝒫AFinfx:𝒫AFin1-1 onto𝒫ranfFin
17 15 16 syl ABωVf:A1-1ωx𝒫AFinfx:𝒫AFin1-1 onto𝒫ranfFin
18 f1oeng 𝒫AFinVx𝒫AFinfx:𝒫AFin1-1 onto𝒫ranfFin𝒫AFin𝒫ranfFin
19 10 17 18 syl2anc ABωVf:A1-1ω𝒫AFin𝒫ranfFin
20 pwexg ωV𝒫ωV
21 20 ad2antlr ABωVf:A1-1ω𝒫ωV
22 inex1g 𝒫ωV𝒫ωFinV
23 21 22 syl ABωVf:A1-1ω𝒫ωFinV
24 f1f f:A1-1ωf:Aω
25 24 frnd f:A1-1ωranfω
26 25 adantl ABωVf:A1-1ωranfω
27 26 sspwd ABωVf:A1-1ω𝒫ranf𝒫ω
28 27 ssrind ABωVf:A1-1ω𝒫ranfFin𝒫ωFin
29 ssdomg 𝒫ωFinV𝒫ranfFin𝒫ωFin𝒫ranfFin𝒫ωFin
30 23 28 29 sylc ABωVf:A1-1ω𝒫ranfFin𝒫ωFin
31 sneq f=zf=z
32 pweq f=z𝒫f=𝒫z
33 31 32 xpeq12d f=zf×𝒫f=z×𝒫z
34 33 cbviunv fxf×𝒫f=zxz×𝒫z
35 iuneq1 x=yzxz×𝒫z=zyz×𝒫z
36 34 35 eqtrid x=yfxf×𝒫f=zyz×𝒫z
37 36 fveq2d x=ycardfxf×𝒫f=cardzyz×𝒫z
38 37 cbvmptv x𝒫ωFincardfxf×𝒫f=y𝒫ωFincardzyz×𝒫z
39 38 ackbij1 x𝒫ωFincardfxf×𝒫f:𝒫ωFin1-1 ontoω
40 f1oeng 𝒫ωFinVx𝒫ωFincardfxf×𝒫f:𝒫ωFin1-1 ontoω𝒫ωFinω
41 23 39 40 sylancl ABωVf:A1-1ω𝒫ωFinω
42 domentr 𝒫ranfFin𝒫ωFin𝒫ωFinω𝒫ranfFinω
43 30 41 42 syl2anc ABωVf:A1-1ω𝒫ranfFinω
44 endomtr 𝒫AFin𝒫ranfFin𝒫ranfFinω𝒫AFinω
45 19 43 44 syl2anc ABωVf:A1-1ω𝒫AFinω
46 domtr 𝒫AFin𝒫AFin𝒫AFinω𝒫AFinω
47 13 45 46 syl2anc ABωVf:A1-1ω𝒫AFinω
48 ondomen ωOn𝒫AFinω𝒫AFindomcard
49 6 47 48 syl2anc ABωVf:A1-1ω𝒫AFindomcard
50 eqid y𝒫AFiny=y𝒫AFiny
51 50 fifo ABy𝒫AFiny:𝒫AFinontofiA
52 51 ad2antrr ABωVf:A1-1ωy𝒫AFiny:𝒫AFinontofiA
53 fodomnum 𝒫AFindomcardy𝒫AFiny:𝒫AFinontofiAfiA𝒫AFin
54 49 52 53 sylc ABωVf:A1-1ωfiA𝒫AFin
55 domtr fiA𝒫AFin𝒫AFinωfiAω
56 54 47 55 syl2anc ABωVf:A1-1ωfiAω
57 56 ex ABωVf:A1-1ωfiAω
58 57 exlimdv ABωVff:A1-1ωfiAω
59 4 58 sylan2 ABAωff:A1-1ωfiAω
60 2 59 mpd ABAωfiAω
61 60 ex ABAωfiAω
62 fvex fiAV
63 ssfii ABAfiA
64 ssdomg fiAVAfiAAfiA
65 62 63 64 mpsyl ABAfiA
66 domtr AfiAfiAωAω
67 66 ex AfiAfiAωAω
68 65 67 syl ABfiAωAω
69 61 68 impbid ABAωfiAω