Description: A set is countable iff its collection of finite intersections is countable. (Contributed by Jeff Hankins, 24-Aug-2009) (Proof shortened by Mario Carneiro, 17-May-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | fictb | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brdomi | |
|
2 | 1 | adantl | |
3 | reldom | |
|
4 | 3 | brrelex2i | |
5 | omelon2 | |
|
6 | 5 | ad2antlr | |
7 | pwexg | |
|
8 | 7 | ad2antrr | |
9 | inex1g | |
|
10 | 8 9 | syl | |
11 | difss | |
|
12 | ssdomg | |
|
13 | 10 11 12 | mpisyl | |
14 | f1f1orn | |
|
15 | 14 | adantl | |
16 | f1opwfi | |
|
17 | 15 16 | syl | |
18 | f1oeng | |
|
19 | 10 17 18 | syl2anc | |
20 | pwexg | |
|
21 | 20 | ad2antlr | |
22 | inex1g | |
|
23 | 21 22 | syl | |
24 | f1f | |
|
25 | 24 | frnd | |
26 | 25 | adantl | |
27 | 26 | sspwd | |
28 | 27 | ssrind | |
29 | ssdomg | |
|
30 | 23 28 29 | sylc | |
31 | sneq | |
|
32 | pweq | |
|
33 | 31 32 | xpeq12d | |
34 | 33 | cbviunv | |
35 | iuneq1 | |
|
36 | 34 35 | eqtrid | |
37 | 36 | fveq2d | |
38 | 37 | cbvmptv | |
39 | 38 | ackbij1 | |
40 | f1oeng | |
|
41 | 23 39 40 | sylancl | |
42 | domentr | |
|
43 | 30 41 42 | syl2anc | |
44 | endomtr | |
|
45 | 19 43 44 | syl2anc | |
46 | domtr | |
|
47 | 13 45 46 | syl2anc | |
48 | ondomen | |
|
49 | 6 47 48 | syl2anc | |
50 | eqid | |
|
51 | 50 | fifo | |
52 | 51 | ad2antrr | |
53 | fodomnum | |
|
54 | 49 52 53 | sylc | |
55 | domtr | |
|
56 | 54 47 55 | syl2anc | |
57 | 56 | ex | |
58 | 57 | exlimdv | |
59 | 4 58 | sylan2 | |
60 | 2 59 | mpd | |
61 | 60 | ex | |
62 | fvex | |
|
63 | ssfii | |
|
64 | ssdomg | |
|
65 | 62 63 64 | mpsyl | |
66 | domtr | |
|
67 | 66 | ex | |
68 | 65 67 | syl | |
69 | 61 68 | impbid | |