Description: Lemma for isfin2-2 . (Contributed by Stefan O'Rear, 31-Oct-2014) (Revised by Mario Carneiro, 16-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fin23lem11.1 | |
|
fin23lem11.2 | |
||
fin23lem11.3 | |
||
Assertion | fin23lem11 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fin23lem11.1 | |
|
2 | fin23lem11.2 | |
|
3 | fin23lem11.3 | |
|
4 | difeq2 | |
|
5 | 4 | eleq1d | |
6 | 5 | elrab | |
7 | simp2r | |
|
8 | 2 | notbid | |
9 | simpl3 | |
|
10 | difeq2 | |
|
11 | 10 | eleq1d | |
12 | difss | |
|
13 | ssun1 | |
|
14 | undif1 | |
|
15 | 13 14 | sseqtrri | |
16 | simpl2r | |
|
17 | simpl2l | |
|
18 | unexg | |
|
19 | 16 17 18 | syl2anc | |
20 | ssexg | |
|
21 | 15 19 20 | sylancr | |
22 | elpw2g | |
|
23 | 21 22 | syl | |
24 | 12 23 | mpbiri | |
25 | simpl1 | |
|
26 | simpr | |
|
27 | 25 26 | sseldd | |
28 | 27 | elpwid | |
29 | dfss4 | |
|
30 | 28 29 | sylib | |
31 | 30 26 | eqeltrd | |
32 | 11 24 31 | elrabd | |
33 | 8 9 32 | rspcdva | |
34 | simplrl | |
|
35 | 34 | elpwid | |
36 | ssel2 | |
|
37 | 36 | adantlr | |
38 | 37 | elpwid | |
39 | 35 38 3 | syl2anc | |
40 | 39 | notbid | |
41 | 40 | 3adantl3 | |
42 | 33 41 | mpbird | |
43 | 42 | ralrimiva | |
44 | 1 | notbid | |
45 | 44 | ralbidv | |
46 | 45 | rspcev | |
47 | 7 43 46 | syl2anc | |
48 | 47 | 3exp | |
49 | 6 48 | biimtrid | |
50 | 49 | rexlimdv | |