Metamath Proof Explorer


Theorem fin23lem11

Description: Lemma for isfin2-2 . (Contributed by Stefan O'Rear, 31-Oct-2014) (Revised by Mario Carneiro, 16-May-2015)

Ref Expression
Hypotheses fin23lem11.1 z=Axψχ
fin23lem11.2 w=Avφθ
fin23lem11.3 xAvAχθ
Assertion fin23lem11 B𝒫Axc𝒫A|AcBwc𝒫A|AcB¬φzBvB¬ψ

Proof

Step Hyp Ref Expression
1 fin23lem11.1 z=Axψχ
2 fin23lem11.2 w=Avφθ
3 fin23lem11.3 xAvAχθ
4 difeq2 c=xAc=Ax
5 4 eleq1d c=xAcBAxB
6 5 elrab xc𝒫A|AcBx𝒫AAxB
7 simp2r B𝒫Ax𝒫AAxBwc𝒫A|AcB¬φAxB
8 2 notbid w=Av¬φ¬θ
9 simpl3 B𝒫Ax𝒫AAxBwc𝒫A|AcB¬φvBwc𝒫A|AcB¬φ
10 difeq2 c=AvAc=AAv
11 10 eleq1d c=AvAcBAAvB
12 difss AvA
13 ssun1 AAx
14 undif1 Axx=Ax
15 13 14 sseqtrri AAxx
16 simpl2r B𝒫Ax𝒫AAxBwc𝒫A|AcB¬φvBAxB
17 simpl2l B𝒫Ax𝒫AAxBwc𝒫A|AcB¬φvBx𝒫A
18 unexg AxBx𝒫AAxxV
19 16 17 18 syl2anc B𝒫Ax𝒫AAxBwc𝒫A|AcB¬φvBAxxV
20 ssexg AAxxAxxVAV
21 15 19 20 sylancr B𝒫Ax𝒫AAxBwc𝒫A|AcB¬φvBAV
22 elpw2g AVAv𝒫AAvA
23 21 22 syl B𝒫Ax𝒫AAxBwc𝒫A|AcB¬φvBAv𝒫AAvA
24 12 23 mpbiri B𝒫Ax𝒫AAxBwc𝒫A|AcB¬φvBAv𝒫A
25 simpl1 B𝒫Ax𝒫AAxBwc𝒫A|AcB¬φvBB𝒫A
26 simpr B𝒫Ax𝒫AAxBwc𝒫A|AcB¬φvBvB
27 25 26 sseldd B𝒫Ax𝒫AAxBwc𝒫A|AcB¬φvBv𝒫A
28 27 elpwid B𝒫Ax𝒫AAxBwc𝒫A|AcB¬φvBvA
29 dfss4 vAAAv=v
30 28 29 sylib B𝒫Ax𝒫AAxBwc𝒫A|AcB¬φvBAAv=v
31 30 26 eqeltrd B𝒫Ax𝒫AAxBwc𝒫A|AcB¬φvBAAvB
32 11 24 31 elrabd B𝒫Ax𝒫AAxBwc𝒫A|AcB¬φvBAvc𝒫A|AcB
33 8 9 32 rspcdva B𝒫Ax𝒫AAxBwc𝒫A|AcB¬φvB¬θ
34 simplrl B𝒫Ax𝒫AAxBvBx𝒫A
35 34 elpwid B𝒫Ax𝒫AAxBvBxA
36 ssel2 B𝒫AvBv𝒫A
37 36 adantlr B𝒫Ax𝒫AAxBvBv𝒫A
38 37 elpwid B𝒫Ax𝒫AAxBvBvA
39 35 38 3 syl2anc B𝒫Ax𝒫AAxBvBχθ
40 39 notbid B𝒫Ax𝒫AAxBvB¬χ¬θ
41 40 3adantl3 B𝒫Ax𝒫AAxBwc𝒫A|AcB¬φvB¬χ¬θ
42 33 41 mpbird B𝒫Ax𝒫AAxBwc𝒫A|AcB¬φvB¬χ
43 42 ralrimiva B𝒫Ax𝒫AAxBwc𝒫A|AcB¬φvB¬χ
44 1 notbid z=Ax¬ψ¬χ
45 44 ralbidv z=AxvB¬ψvB¬χ
46 45 rspcev AxBvB¬χzBvB¬ψ
47 7 43 46 syl2anc B𝒫Ax𝒫AAxBwc𝒫A|AcB¬φzBvB¬ψ
48 47 3exp B𝒫Ax𝒫AAxBwc𝒫A|AcB¬φzBvB¬ψ
49 6 48 biimtrid B𝒫Axc𝒫A|AcBwc𝒫A|AcB¬φzBvB¬ψ
50 49 rexlimdv B𝒫Axc𝒫A|AcBwc𝒫A|AcB¬φzBvB¬ψ