Metamath Proof Explorer


Theorem flt4lem2

Description: If A is even, B is odd. (Contributed by SN, 22-Aug-2024)

Ref Expression
Hypotheses flt4lem2.a φA
flt4lem2.b φB
flt4lem2.c φC
flt4lem2.1 φ2A
flt4lem2.2 φAgcdC=1
flt4lem2.3 φA2+B2=C2
Assertion flt4lem2 φ¬2B

Proof

Step Hyp Ref Expression
1 flt4lem2.a φA
2 flt4lem2.b φB
3 flt4lem2.c φC
4 flt4lem2.1 φ2A
5 flt4lem2.2 φAgcdC=1
6 flt4lem2.3 φA2+B2=C2
7 breq1 i=2iA2A
8 breq1 i=2iC2C
9 7 8 anbi12d i=2iAiC2A2C
10 2z 2
11 uzid 222
12 10 11 ax-mp 22
13 12 a1i φ2B22
14 4 adantr φ2B2A
15 10 a1i φ2B2
16 gcdnncl ABAgcdB
17 1 2 16 syl2anc φAgcdB
18 17 nnzd φAgcdB
19 18 adantr φ2BAgcdB
20 3 adantr φ2BC
21 20 nnzd φ2BC
22 simpr φ2B2B
23 1 adantr φ2BA
24 23 nnzd φ2BA
25 2 nnzd φB
26 25 adantr φ2BB
27 dvdsgcd 2AB2A2B2AgcdB
28 15 24 26 27 syl3anc φ2B2A2B2AgcdB
29 14 22 28 mp2and φ2B2AgcdB
30 2nn 2
31 30 a1i φ2
32 1 2 3 31 6 fltdvdsabdvdsc φAgcdBC
33 32 adantr φ2BAgcdBC
34 15 19 21 29 33 dvdstrd φ2B2C
35 14 34 jca φ2B2A2C
36 9 13 35 rspcedvdw φ2Bi2iAiC
37 ncoprmgcdne1b ACi2iAiCAgcdC1
38 23 20 37 syl2anc φ2Bi2iAiCAgcdC1
39 36 38 mpbid φ2BAgcdC1
40 39 ex φ2BAgcdC1
41 40 necon2bd φAgcdC=1¬2B
42 5 41 mpd φ¬2B