Metamath Proof Explorer


Theorem flt4lem5c

Description: Part 2 of Equation 2 of https://crypto.stanford.edu/pbc/notes/numberfield/fermatn4.html . (Contributed by SN, 22-Aug-2024)

Ref Expression
Hypotheses flt4lem5a.m M=C+B2+CB22
flt4lem5a.n N=C+B2CB22
flt4lem5a.r R=M+N+MN2
flt4lem5a.s S=M+NMN2
flt4lem5a.a φA
flt4lem5a.b φB
flt4lem5a.c φC
flt4lem5a.1 φ¬2A
flt4lem5a.2 φAgcdC=1
flt4lem5a.3 φA4+B4=C2
Assertion flt4lem5c φN=2RS

Proof

Step Hyp Ref Expression
1 flt4lem5a.m M=C+B2+CB22
2 flt4lem5a.n N=C+B2CB22
3 flt4lem5a.r R=M+N+MN2
4 flt4lem5a.s S=M+NMN2
5 flt4lem5a.a φA
6 flt4lem5a.b φB
7 flt4lem5a.c φC
8 flt4lem5a.1 φ¬2A
9 flt4lem5a.2 φAgcdC=1
10 flt4lem5a.3 φA4+B4=C2
11 5 nnsqcld φA2
12 6 nnsqcld φB2
13 2prm 2
14 5 nnzd φA
15 prmdvdssq 2A2A2A2
16 13 14 15 sylancr φ2A2A2
17 8 16 mtbid φ¬2A2
18 2nn 2
19 18 a1i φ2
20 rplpwr AC2AgcdC=1A2gcdC=1
21 5 7 19 20 syl3anc φAgcdC=1A2gcdC=1
22 9 21 mpd φA2gcdC=1
23 5 nncnd φA
24 23 flt4lem φA4=A22
25 6 nncnd φB
26 25 flt4lem φB4=B22
27 24 26 oveq12d φA4+B4=A22+B22
28 27 10 eqtr3d φA22+B22=C2
29 11 12 7 17 22 28 flt4lem1 φA2B2CA22+B22=C2A2gcdB2=1¬2A2
30 2 pythagtriplem13 A2B2CA22+B22=C2A2gcdB2=1¬2A2N
31 29 30 syl φN
32 1 pythagtriplem11 A2B2CA22+B22=C2A2gcdB2=1¬2A2M
33 29 32 syl φM
34 1 2 3 4 5 6 7 8 9 10 flt4lem5a φA2+N2=M2
35 31 nnzd φN
36 14 35 gcdcomd φAgcdN=NgcdA
37 33 nnzd φM
38 35 37 gcdcomd φNgcdM=MgcdN
39 1 2 flt4lem5 A2B2CA22+B22=C2A2gcdB2=1¬2A2MgcdN=1
40 29 39 syl φMgcdN=1
41 38 40 eqtrd φNgcdM=1
42 31 nnsqcld φN2
43 42 nncnd φN2
44 11 nncnd φA2
45 43 44 addcomd φN2+A2=A2+N2
46 45 34 eqtrd φN2+A2=M2
47 31 5 33 41 46 fltabcoprm φNgcdA=1
48 36 47 eqtrd φAgcdN=1
49 3 4 pythagtriplem16 ANMA2+N2=M2AgcdN=1¬2AN=2RS
50 5 31 33 34 48 8 49 syl312anc φN=2RS