Metamath Proof Explorer


Theorem fmla0disjsuc

Description: The set of valid Godel formulas of height 0 is disjoint with the formulas constructed from Godel-sets for the Sheffer stroke NAND and Godel-set of universal quantification. (Contributed by AV, 20-Oct-2023)

Ref Expression
Assertion fmla0disjsuc Fmlax|uFmlavFmlax=u𝑔viωx=𝑔iu=

Proof

Step Hyp Ref Expression
1 fmla0 Fmla=xV|jωkωx=j𝑔k
2 rabab xV|jωkωx=j𝑔k=x|jωkωx=j𝑔k
3 1 2 eqtri Fmla=x|jωkωx=j𝑔k
4 3 ineq1i Fmlax|uFmlavFmlax=u𝑔viωx=𝑔iu=x|jωkωx=j𝑔kx|uFmlavFmlax=u𝑔viωx=𝑔iu
5 inab x|jωkωx=j𝑔kx|uFmlavFmlax=u𝑔viωx=𝑔iu=x|jωkωx=j𝑔kuFmlavFmlax=u𝑔viωx=𝑔iu
6 goel jωkωj𝑔k=jk
7 6 eqeq2d jωkωx=j𝑔kx=jk
8 1n0 1𝑜
9 8 nesymi ¬=1𝑜
10 9 intnanr ¬=1𝑜jk=uv
11 gonafv uVvVu𝑔v=1𝑜uv
12 11 el2v u𝑔v=1𝑜uv
13 12 eqeq2i jk=u𝑔vjk=1𝑜uv
14 0ex V
15 opex jkV
16 14 15 opth jk=1𝑜uv=1𝑜jk=uv
17 13 16 bitri jk=u𝑔v=1𝑜jk=uv
18 10 17 mtbir ¬jk=u𝑔v
19 eqeq1 x=jkx=u𝑔vjk=u𝑔v
20 18 19 mtbiri x=jk¬x=u𝑔v
21 7 20 syl6bi jωkωx=j𝑔k¬x=u𝑔v
22 21 imp jωkωx=j𝑔k¬x=u𝑔v
23 22 adantr jωkωx=j𝑔kuFmla¬x=u𝑔v
24 23 ralrimivw jωkωx=j𝑔kuFmlavFmla¬x=u𝑔v
25 2on0 2𝑜
26 25 nesymi ¬=2𝑜
27 26 orci ¬=2𝑜¬jk=iu
28 14 15 opth jk=2𝑜iu=2𝑜jk=iu
29 28 notbii ¬jk=2𝑜iu¬=2𝑜jk=iu
30 ianor ¬=2𝑜jk=iu¬=2𝑜¬jk=iu
31 29 30 bitri ¬jk=2𝑜iu¬=2𝑜¬jk=iu
32 27 31 mpbir ¬jk=2𝑜iu
33 eqeq1 x=jkx=𝑔iujk=𝑔iu
34 df-goal 𝑔iu=2𝑜iu
35 34 eqeq2i jk=𝑔iujk=2𝑜iu
36 33 35 bitrdi x=jkx=𝑔iujk=2𝑜iu
37 32 36 mtbiri x=jk¬x=𝑔iu
38 7 37 syl6bi jωkωx=j𝑔k¬x=𝑔iu
39 38 imp jωkωx=j𝑔k¬x=𝑔iu
40 39 adantr jωkωx=j𝑔kuFmla¬x=𝑔iu
41 40 adantr jωkωx=j𝑔kuFmlaiω¬x=𝑔iu
42 41 ralrimiva jωkωx=j𝑔kuFmlaiω¬x=𝑔iu
43 24 42 jca jωkωx=j𝑔kuFmlavFmla¬x=u𝑔viω¬x=𝑔iu
44 43 ralrimiva jωkωx=j𝑔kuFmlavFmla¬x=u𝑔viω¬x=𝑔iu
45 ralnex vFmla¬x=u𝑔v¬vFmlax=u𝑔v
46 ralnex iω¬x=𝑔iu¬iωx=𝑔iu
47 45 46 anbi12i vFmla¬x=u𝑔viω¬x=𝑔iu¬vFmlax=u𝑔v¬iωx=𝑔iu
48 ioran ¬vFmlax=u𝑔viωx=𝑔iu¬vFmlax=u𝑔v¬iωx=𝑔iu
49 47 48 bitr4i vFmla¬x=u𝑔viω¬x=𝑔iu¬vFmlax=u𝑔viωx=𝑔iu
50 49 ralbii uFmlavFmla¬x=u𝑔viω¬x=𝑔iuuFmla¬vFmlax=u𝑔viωx=𝑔iu
51 ralnex uFmla¬vFmlax=u𝑔viωx=𝑔iu¬uFmlavFmlax=u𝑔viωx=𝑔iu
52 50 51 bitri uFmlavFmla¬x=u𝑔viω¬x=𝑔iu¬uFmlavFmlax=u𝑔viωx=𝑔iu
53 44 52 sylib jωkωx=j𝑔k¬uFmlavFmlax=u𝑔viωx=𝑔iu
54 53 ex jωkωx=j𝑔k¬uFmlavFmlax=u𝑔viωx=𝑔iu
55 54 rexlimdva jωkωx=j𝑔k¬uFmlavFmlax=u𝑔viωx=𝑔iu
56 55 rexlimiv jωkωx=j𝑔k¬uFmlavFmlax=u𝑔viωx=𝑔iu
57 56 imori ¬jωkωx=j𝑔k¬uFmlavFmlax=u𝑔viωx=𝑔iu
58 ianor ¬jωkωx=j𝑔kuFmlavFmlax=u𝑔viωx=𝑔iu¬jωkωx=j𝑔k¬uFmlavFmlax=u𝑔viωx=𝑔iu
59 57 58 mpbir ¬jωkωx=j𝑔kuFmlavFmlax=u𝑔viωx=𝑔iu
60 59 abf x|jωkωx=j𝑔kuFmlavFmlax=u𝑔viωx=𝑔iu=
61 5 60 eqtri x|jωkωx=j𝑔kx|uFmlavFmlax=u𝑔viωx=𝑔iu=
62 4 61 eqtri Fmlax|uFmlavFmlax=u𝑔viωx=𝑔iu=