Metamath Proof Explorer


Theorem fntpg

Description: Function with a domain of three different values. (Contributed by Alexander van der Vekens, 5-Dec-2017)

Ref Expression
Assertion fntpg XUYVZWAFBGCHXYXZYZXAYBZCFnXYZ

Proof

Step Hyp Ref Expression
1 funtpg XUYVZWAFBGCHXYXZYZFunXAYBZC
2 dmsnopg AFdomXA=X
3 2 3ad2ant1 AFBGCHdomXA=X
4 dmsnopg BGdomYB=Y
5 4 3ad2ant2 AFBGCHdomYB=Y
6 3 5 jca AFBGCHdomXA=XdomYB=Y
7 6 3ad2ant2 XUYVZWAFBGCHXYXZYZdomXA=XdomYB=Y
8 uneq12 domXA=XdomYB=YdomXAdomYB=XY
9 7 8 syl XUYVZWAFBGCHXYXZYZdomXAdomYB=XY
10 df-pr XY=XY
11 9 10 eqtr4di XUYVZWAFBGCHXYXZYZdomXAdomYB=XY
12 df-pr XAYB=XAYB
13 12 dmeqi domXAYB=domXAYB
14 13 eqeq1i domXAYB=XYdomXAYB=XY
15 dmun domXAYB=domXAdomYB
16 15 eqeq1i domXAYB=XYdomXAdomYB=XY
17 14 16 bitri domXAYB=XYdomXAdomYB=XY
18 11 17 sylibr XUYVZWAFBGCHXYXZYZdomXAYB=XY
19 dmsnopg CHdomZC=Z
20 19 3ad2ant3 AFBGCHdomZC=Z
21 20 3ad2ant2 XUYVZWAFBGCHXYXZYZdomZC=Z
22 18 21 uneq12d XUYVZWAFBGCHXYXZYZdomXAYBdomZC=XYZ
23 df-tp XAYBZC=XAYBZC
24 23 dmeqi domXAYBZC=domXAYBZC
25 dmun domXAYBZC=domXAYBdomZC
26 24 25 eqtri domXAYBZC=domXAYBdomZC
27 df-tp XYZ=XYZ
28 22 26 27 3eqtr4g XUYVZWAFBGCHXYXZYZdomXAYBZC=XYZ
29 df-fn XAYBZCFnXYZFunXAYBZCdomXAYBZC=XYZ
30 1 28 29 sylanbrc XUYVZWAFBGCHXYXZYZXAYBZCFnXYZ