Metamath Proof Explorer


Theorem fourierdlem99

Description: limit for F at the upper bound of an interval for the moved partition V . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem99.f φF:
fourierdlem99.p P=mp0m|p0=Apm=Bi0..^mpi<pi+1
fourierdlem99.t T=BA
fourierdlem99.m φM
fourierdlem99.q φQPM
fourierdlem99.fper φxFx+T=Fx
fourierdlem99.qcn φi0..^MFQiQi+1:QiQi+1cn
fourierdlem99.l φi0..^MLFQiQi+1limQi+1
fourierdlem99.c φC
fourierdlem99.d φDC+∞
fourierdlem99.j φJ0..^CDyCD|ky+kTranQ1
fourierdlem99.v V=ιg|gIsom<,<0CDyCD|ky+kTranQ1CDyCD|hy+hTranQ
Assertion fourierdlem99 φifvv+BvTTVJ+1=Qysupj0..^M|QjuABifu=BAuvv+BvTTy<VJ+1i0..^MLysupj0..^M|QjuABifu=BAuvv+BvTTy<VJFvv+BvTTVJ+1FVJVJ+1limVJ+1

Proof

Step Hyp Ref Expression
1 fourierdlem99.f φF:
2 fourierdlem99.p P=mp0m|p0=Apm=Bi0..^mpi<pi+1
3 fourierdlem99.t T=BA
4 fourierdlem99.m φM
5 fourierdlem99.q φQPM
6 fourierdlem99.fper φxFx+T=Fx
7 fourierdlem99.qcn φi0..^MFQiQi+1:QiQi+1cn
8 fourierdlem99.l φi0..^MLFQiQi+1limQi+1
9 fourierdlem99.c φC
10 fourierdlem99.d φDC+∞
11 fourierdlem99.j φJ0..^CDyCD|ky+kTranQ1
12 fourierdlem99.v V=ιg|gIsom<,<0CDyCD|ky+kTranQ1CDyCD|hy+hTranQ
13 ax-resscn
14 13 a1i φ
15 1 14 fssd φF:
16 eqid mp0m|p0=Cpm=Di0..^mpi<pi+1=mp0m|p0=Cpm=Di0..^mpi<pi+1
17 oveq1 z=yz+lT=y+lT
18 17 eleq1d z=yz+lTranQy+lTranQ
19 18 rexbidv z=ylz+lTranQly+lTranQ
20 19 cbvrabv zCD|lz+lTranQ=yCD|ly+lTranQ
21 20 uneq2i CDzCD|lz+lTranQ=CDyCD|ly+lTranQ
22 21 eqcomi CDyCD|ly+lTranQ=CDzCD|lz+lTranQ
23 oveq1 k=lkT=lT
24 23 oveq2d k=ly+kT=y+lT
25 24 eleq1d k=ly+kTranQy+lTranQ
26 25 cbvrexvw ky+kTranQly+lTranQ
27 26 a1i yCDky+kTranQly+lTranQ
28 27 rabbiia yCD|ky+kTranQ=yCD|ly+lTranQ
29 28 uneq2i CDyCD|ky+kTranQ=CDyCD|ly+lTranQ
30 29 fveq2i CDyCD|ky+kTranQ=CDyCD|ly+lTranQ
31 30 oveq1i CDyCD|ky+kTranQ1=CDyCD|ly+lTranQ1
32 oveq1 l=hlT=hT
33 32 oveq2d l=hy+lT=y+hT
34 33 eleq1d l=hy+lTranQy+hTranQ
35 34 cbvrexvw ly+lTranQhy+hTranQ
36 35 a1i yCDly+lTranQhy+hTranQ
37 36 rabbiia yCD|ly+lTranQ=yCD|hy+hTranQ
38 37 uneq2i CDyCD|ly+lTranQ=CDyCD|hy+hTranQ
39 isoeq5 CDyCD|ly+lTranQ=CDyCD|hy+hTranQgIsom<,<0CDyCD|ky+kTranQ1CDyCD|ly+lTranQgIsom<,<0CDyCD|ky+kTranQ1CDyCD|hy+hTranQ
40 38 39 ax-mp gIsom<,<0CDyCD|ky+kTranQ1CDyCD|ly+lTranQgIsom<,<0CDyCD|ky+kTranQ1CDyCD|hy+hTranQ
41 40 iotabii ιg|gIsom<,<0CDyCD|ky+kTranQ1CDyCD|ly+lTranQ=ιg|gIsom<,<0CDyCD|ky+kTranQ1CDyCD|hy+hTranQ
42 isoeq1 f=gfIsom<,<0CDyCD|ky+kTranQ1CDyCD|ly+lTranQgIsom<,<0CDyCD|ky+kTranQ1CDyCD|ly+lTranQ
43 42 cbviotavw ιf|fIsom<,<0CDyCD|ky+kTranQ1CDyCD|ly+lTranQ=ιg|gIsom<,<0CDyCD|ky+kTranQ1CDyCD|ly+lTranQ
44 41 43 12 3eqtr4ri V=ιf|fIsom<,<0CDyCD|ky+kTranQ1CDyCD|ly+lTranQ
45 id v=xv=x
46 oveq2 v=xBv=Bx
47 46 oveq1d v=xBvT=BxT
48 47 fveq2d v=xBvT=BxT
49 48 oveq1d v=xBvTT=BxTT
50 45 49 oveq12d v=xv+BvTT=x+BxTT
51 50 cbvmptv vv+BvTT=xx+BxTT
52 eqeq1 u=zu=Bz=B
53 id u=zu=z
54 52 53 ifbieq2d u=zifu=BAu=ifz=BAz
55 54 cbvmptv uABifu=BAu=zABifz=BAz
56 eqid VJ+1vv+BvTTVJ+1=VJ+1vv+BvTTVJ+1
57 fveq2 j=iQj=Qi
58 57 breq1d j=iQjuABifu=BAuvv+BvTTyQiuABifu=BAuvv+BvTTy
59 58 cbvrabv j0..^M|QjuABifu=BAuvv+BvTTy=i0..^M|QiuABifu=BAuvv+BvTTy
60 fveq2 y=xvv+BvTTy=vv+BvTTx
61 60 fveq2d y=xuABifu=BAuvv+BvTTy=uABifu=BAuvv+BvTTx
62 61 breq2d y=xQiuABifu=BAuvv+BvTTyQiuABifu=BAuvv+BvTTx
63 62 rabbidv y=xi0..^M|QiuABifu=BAuvv+BvTTy=i0..^M|QiuABifu=BAuvv+BvTTx
64 59 63 eqtrid y=xj0..^M|QjuABifu=BAuvv+BvTTy=i0..^M|QiuABifu=BAuvv+BvTTx
65 64 supeq1d y=xsupj0..^M|QjuABifu=BAuvv+BvTTy<=supi0..^M|QiuABifu=BAuvv+BvTTx<
66 65 cbvmptv ysupj0..^M|QjuABifu=BAuvv+BvTTy<=xsupi0..^M|QiuABifu=BAuvv+BvTTx<
67 eqid i0..^ML=i0..^ML
68 2 3 4 5 15 6 7 8 9 10 16 22 31 44 51 55 11 56 66 67 fourierdlem91 φifvv+BvTTVJ+1=Qysupj0..^M|QjuABifu=BAuvv+BvTTy<VJ+1i0..^MLysupj0..^M|QjuABifu=BAuvv+BvTTy<VJFvv+BvTTVJ+1FVJVJ+1limVJ+1