| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fprodeq02.1 |
|
| 2 |
|
fprodeq02.a |
|
| 3 |
|
fprodeq02.b |
|
| 4 |
|
fprodeq02.k |
|
| 5 |
|
fprodeq02.c |
|
| 6 |
|
disjdif |
|
| 7 |
6
|
a1i |
|
| 8 |
4
|
snssd |
|
| 9 |
|
undif |
|
| 10 |
8 9
|
sylib |
|
| 11 |
10
|
eqcomd |
|
| 12 |
7 11 2 3
|
fprodsplit |
|
| 13 |
|
0cnd |
|
| 14 |
5 13
|
eqeltrd |
|
| 15 |
1
|
prodsn |
|
| 16 |
4 14 15
|
syl2anc |
|
| 17 |
16 5
|
eqtrd |
|
| 18 |
17
|
oveq1d |
|
| 19 |
|
diffi |
|
| 20 |
2 19
|
syl |
|
| 21 |
|
difssd |
|
| 22 |
21
|
sselda |
|
| 23 |
22 3
|
syldan |
|
| 24 |
20 23
|
fprodcl |
|
| 25 |
24
|
mul02d |
|
| 26 |
12 18 25
|
3eqtrd |
|