Metamath Proof Explorer


Theorem frgr3vlem2

Description: Lemma 2 for frgr3v . (Contributed by Alexander van der Vekens, 4-Oct-2017) (Revised by AV, 29-Mar-2021)

Ref Expression
Hypotheses frgr3v.v V = Vtx G
frgr3v.e E = Edg G
Assertion frgr3vlem2 A X B Y C Z A B A C B C V = A B C G USGraph ∃! x A B C x A x B E C A E C B E

Proof

Step Hyp Ref Expression
1 frgr3v.v V = Vtx G
2 frgr3v.e E = Edg G
3 df-reu ∃! x A B C x A x B E ∃! x x A B C x A x B E
4 eleq1w x = y x A B C y A B C
5 preq1 x = y x A = y A
6 preq1 x = y x B = y B
7 5 6 preq12d x = y x A x B = y A y B
8 7 sseq1d x = y x A x B E y A y B E
9 4 8 anbi12d x = y x A B C x A x B E y A B C y A y B E
10 9 eu4 ∃! x x A B C x A x B E x x A B C x A x B E x y x A B C x A x B E y A B C y A y B E x = y
11 1 2 frgr3vlem1 A X B Y C Z A B A C B C V = A B C G USGraph x y x A B C x A x B E y A B C y A y B E x = y
12 11 3expa A X B Y C Z A B A C B C V = A B C G USGraph x y x A B C x A x B E y A B C y A y B E x = y
13 12 biantrud A X B Y C Z A B A C B C V = A B C G USGraph x x A B C x A x B E x x A B C x A x B E x y x A B C x A x B E y A B C y A y B E x = y
14 vex x V
15 14 eltp x A B C x = A x = B x = C
16 preq1 x = A x A = A A
17 preq1 x = A x B = A B
18 16 17 preq12d x = A x A x B = A A A B
19 18 sseq1d x = A x A x B E A A A B E
20 prex A A V
21 prex A B V
22 20 21 prss A A E A B E A A A B E
23 2 usgredgne G USGraph A A E A A
24 23 adantll V = A B C G USGraph A A E A A
25 df-ne A A ¬ A = A
26 eqid A = A
27 26 pm2.24i ¬ A = A C A E C B E
28 25 27 sylbi A A C A E C B E
29 24 28 syl V = A B C G USGraph A A E C A E C B E
30 29 ex V = A B C G USGraph A A E C A E C B E
31 30 adantl A X B Y C Z A B A C B C V = A B C G USGraph A A E C A E C B E
32 31 com12 A A E A X B Y C Z A B A C B C V = A B C G USGraph C A E C B E
33 32 adantr A A E A B E A X B Y C Z A B A C B C V = A B C G USGraph C A E C B E
34 22 33 sylbir A A A B E A X B Y C Z A B A C B C V = A B C G USGraph C A E C B E
35 19 34 syl6bi x = A x A x B E A X B Y C Z A B A C B C V = A B C G USGraph C A E C B E
36 preq1 x = B x A = B A
37 preq1 x = B x B = B B
38 36 37 preq12d x = B x A x B = B A B B
39 38 sseq1d x = B x A x B E B A B B E
40 prex B A V
41 prex B B V
42 40 41 prss B A E B B E B A B B E
43 2 usgredgne G USGraph B B E B B
44 43 adantll V = A B C G USGraph B B E B B
45 df-ne B B ¬ B = B
46 eqid B = B
47 46 pm2.24i ¬ B = B C A E C B E
48 45 47 sylbi B B C A E C B E
49 44 48 syl V = A B C G USGraph B B E C A E C B E
50 49 ex V = A B C G USGraph B B E C A E C B E
51 50 adantl A X B Y C Z A B A C B C V = A B C G USGraph B B E C A E C B E
52 51 com12 B B E A X B Y C Z A B A C B C V = A B C G USGraph C A E C B E
53 52 adantl B A E B B E A X B Y C Z A B A C B C V = A B C G USGraph C A E C B E
54 42 53 sylbir B A B B E A X B Y C Z A B A C B C V = A B C G USGraph C A E C B E
55 39 54 syl6bi x = B x A x B E A X B Y C Z A B A C B C V = A B C G USGraph C A E C B E
56 preq1 x = C x A = C A
57 preq1 x = C x B = C B
58 56 57 preq12d x = C x A x B = C A C B
59 58 sseq1d x = C x A x B E C A C B E
60 prex C A V
61 prex C B V
62 60 61 prss C A E C B E C A C B E
63 ax-1 C A E C B E A X B Y C Z A B A C B C V = A B C G USGraph C A E C B E
64 62 63 sylbir C A C B E A X B Y C Z A B A C B C V = A B C G USGraph C A E C B E
65 59 64 syl6bi x = C x A x B E A X B Y C Z A B A C B C V = A B C G USGraph C A E C B E
66 35 55 65 3jaoi x = A x = B x = C x A x B E A X B Y C Z A B A C B C V = A B C G USGraph C A E C B E
67 15 66 sylbi x A B C x A x B E A X B Y C Z A B A C B C V = A B C G USGraph C A E C B E
68 67 imp x A B C x A x B E A X B Y C Z A B A C B C V = A B C G USGraph C A E C B E
69 68 com12 A X B Y C Z A B A C B C V = A B C G USGraph x A B C x A x B E C A E C B E
70 69 exlimdv A X B Y C Z A B A C B C V = A B C G USGraph x x A B C x A x B E C A E C B E
71 prssi C A E C B E C A C B E
72 71 adantl A X B Y C Z A B A C B C V = A B C G USGraph C A E C B E C A C B E
73 72 3mix3d A X B Y C Z A B A C B C V = A B C G USGraph C A E C B E A A A B E B A B B E C A C B E
74 19 39 59 rextpg A X B Y C Z x A B C x A x B E A A A B E B A B B E C A C B E
75 74 ad3antrrr A X B Y C Z A B A C B C V = A B C G USGraph C A E C B E x A B C x A x B E A A A B E B A B B E C A C B E
76 73 75 mpbird A X B Y C Z A B A C B C V = A B C G USGraph C A E C B E x A B C x A x B E
77 df-rex x A B C x A x B E x x A B C x A x B E
78 76 77 sylib A X B Y C Z A B A C B C V = A B C G USGraph C A E C B E x x A B C x A x B E
79 78 ex A X B Y C Z A B A C B C V = A B C G USGraph C A E C B E x x A B C x A x B E
80 70 79 impbid A X B Y C Z A B A C B C V = A B C G USGraph x x A B C x A x B E C A E C B E
81 13 80 bitr3d A X B Y C Z A B A C B C V = A B C G USGraph x x A B C x A x B E x y x A B C x A x B E y A B C y A y B E x = y C A E C B E
82 10 81 syl5bb A X B Y C Z A B A C B C V = A B C G USGraph ∃! x x A B C x A x B E C A E C B E
83 3 82 syl5bb A X B Y C Z A B A C B C V = A B C G USGraph ∃! x A B C x A x B E C A E C B E
84 83 ex A X B Y C Z A B A C B C V = A B C G USGraph ∃! x A B C x A x B E C A E C B E