Metamath Proof Explorer


Theorem frgrreg

Description: If a finite nonempty friendship graph is K-regular, then K must be 2 (or 0 ). (Contributed by Alexander van der Vekens, 9-Oct-2018) (Revised by AV, 3-Jun-2021)

Ref Expression
Hypothesis frgrreggt1.v V = Vtx G
Assertion frgrreg V Fin V G FriendGraph G RegUSGraph K K = 0 K = 2

Proof

Step Hyp Ref Expression
1 frgrreggt1.v V = Vtx G
2 ancom V Fin V V V Fin
3 ancom G FriendGraph G RegUSGraph K G RegUSGraph K G FriendGraph
4 2 3 anbi12i V Fin V G FriendGraph G RegUSGraph K V V Fin G RegUSGraph K G FriendGraph
5 4 biimpi V Fin V G FriendGraph G RegUSGraph K V V Fin G RegUSGraph K G FriendGraph
6 5 ancomd V Fin V G FriendGraph G RegUSGraph K G RegUSGraph K G FriendGraph V V Fin
7 1 numclwwlk7lem G RegUSGraph K G FriendGraph V V Fin K 0
8 6 7 syl V Fin V G FriendGraph G RegUSGraph K K 0
9 neanior K 0 K 2 ¬ K = 0 K = 2
10 nn0re K 0 K
11 1re 1
12 lenlt K 1 K 1 ¬ 1 < K
13 10 11 12 sylancl K 0 K 1 ¬ 1 < K
14 13 adantl K 0 K 2 K 0 K 1 ¬ 1 < K
15 elnnne0 K K 0 K 0
16 nnle1eq1 K K 1 K = 1
17 16 biimpd K K 1 K = 1
18 15 17 sylbir K 0 K 0 K 1 K = 1
19 18 a1d K 0 K 0 K 2 K 1 K = 1
20 19 expimpd K 0 K 0 K 2 K 1 K = 1
21 20 impcom K 0 K 2 K 0 K 1 K = 1
22 14 21 sylbird K 0 K 2 K 0 ¬ 1 < K K = 1
23 1 fveq2i V = Vtx G
24 23 eqeq1i V = 1 Vtx G = 1
25 24 biimpi V = 1 Vtx G = 1
26 simpr G FriendGraph G RegUSGraph K G RegUSGraph K
27 26 adantl V Fin V G FriendGraph G RegUSGraph K G RegUSGraph K
28 rusgr1vtx Vtx G = 1 G RegUSGraph K K = 0
29 25 27 28 syl2an V = 1 V Fin V G FriendGraph G RegUSGraph K K = 0
30 29 orcd V = 1 V Fin V G FriendGraph G RegUSGraph K K = 0 K = 2
31 30 ex V = 1 V Fin V G FriendGraph G RegUSGraph K K = 0 K = 2
32 31 a1d V = 1 K = 1 V Fin V G FriendGraph G RegUSGraph K K = 0 K = 2
33 eqid VtxDeg G = VtxDeg G
34 1 33 rusgrprop0 G RegUSGraph K G USGraph K 0 * v V VtxDeg G v = K
35 simp2 ¬ V = 1 G FriendGraph V Fin V G FriendGraph
36 hashnncl V Fin V V
37 df-ne V 1 ¬ V = 1
38 nngt1ne1 V 1 < V V 1
39 38 biimprd V V 1 1 < V
40 37 39 syl5bir V ¬ V = 1 1 < V
41 36 40 syl6bir V Fin V ¬ V = 1 1 < V
42 41 imp V Fin V ¬ V = 1 1 < V
43 42 impcom ¬ V = 1 V Fin V 1 < V
44 1 vdgn1frgrv3 G FriendGraph 1 < V v V VtxDeg G v 1
45 35 43 44 3imp3i2an ¬ V = 1 G FriendGraph V Fin V v V VtxDeg G v 1
46 r19.26 v V VtxDeg G v 1 VtxDeg G v = K v V VtxDeg G v 1 v V VtxDeg G v = K
47 r19.2z V v V VtxDeg G v 1 VtxDeg G v = K v V VtxDeg G v 1 VtxDeg G v = K
48 neeq1 VtxDeg G v = K VtxDeg G v 1 K 1
49 48 biimpd VtxDeg G v = K VtxDeg G v 1 K 1
50 49 impcom VtxDeg G v 1 VtxDeg G v = K K 1
51 eqneqall K = 1 K 1 K = 0 K = 2
52 51 com12 K 1 K = 1 K = 0 K = 2
53 50 52 syl VtxDeg G v 1 VtxDeg G v = K K = 1 K = 0 K = 2
54 53 rexlimivw v V VtxDeg G v 1 VtxDeg G v = K K = 1 K = 0 K = 2
55 47 54 syl V v V VtxDeg G v 1 VtxDeg G v = K K = 1 K = 0 K = 2
56 55 ex V v V VtxDeg G v 1 VtxDeg G v = K K = 1 K = 0 K = 2
57 46 56 syl5bir V v V VtxDeg G v 1 v V VtxDeg G v = K K = 1 K = 0 K = 2
58 57 expd V v V VtxDeg G v 1 v V VtxDeg G v = K K = 1 K = 0 K = 2
59 58 com34 V v V VtxDeg G v 1 K = 1 v V VtxDeg G v = K K = 0 K = 2
60 59 adantl V Fin V v V VtxDeg G v 1 K = 1 v V VtxDeg G v = K K = 0 K = 2
61 60 3ad2ant3 ¬ V = 1 G FriendGraph V Fin V v V VtxDeg G v 1 K = 1 v V VtxDeg G v = K K = 0 K = 2
62 45 61 mpd ¬ V = 1 G FriendGraph V Fin V K = 1 v V VtxDeg G v = K K = 0 K = 2
63 62 3exp ¬ V = 1 G FriendGraph V Fin V K = 1 v V VtxDeg G v = K K = 0 K = 2
64 63 com15 v V VtxDeg G v = K G FriendGraph V Fin V K = 1 ¬ V = 1 K = 0 K = 2
65 64 3ad2ant3 G USGraph K 0 * v V VtxDeg G v = K G FriendGraph V Fin V K = 1 ¬ V = 1 K = 0 K = 2
66 34 65 syl G RegUSGraph K G FriendGraph V Fin V K = 1 ¬ V = 1 K = 0 K = 2
67 66 impcom G FriendGraph G RegUSGraph K V Fin V K = 1 ¬ V = 1 K = 0 K = 2
68 67 impcom V Fin V G FriendGraph G RegUSGraph K K = 1 ¬ V = 1 K = 0 K = 2
69 68 com13 ¬ V = 1 K = 1 V Fin V G FriendGraph G RegUSGraph K K = 0 K = 2
70 32 69 pm2.61i K = 1 V Fin V G FriendGraph G RegUSGraph K K = 0 K = 2
71 22 70 syl6 K 0 K 2 K 0 ¬ 1 < K V Fin V G FriendGraph G RegUSGraph K K = 0 K = 2
72 71 ex K 0 K 2 K 0 ¬ 1 < K V Fin V G FriendGraph G RegUSGraph K K = 0 K = 2
73 72 com23 K 0 K 2 ¬ 1 < K K 0 V Fin V G FriendGraph G RegUSGraph K K = 0 K = 2
74 9 73 sylbir ¬ K = 0 K = 2 ¬ 1 < K K 0 V Fin V G FriendGraph G RegUSGraph K K = 0 K = 2
75 74 impcom ¬ 1 < K ¬ K = 0 K = 2 K 0 V Fin V G FriendGraph G RegUSGraph K K = 0 K = 2
76 75 com13 V Fin V G FriendGraph G RegUSGraph K K 0 ¬ 1 < K ¬ K = 0 K = 2 K = 0 K = 2
77 8 76 mpd V Fin V G FriendGraph G RegUSGraph K ¬ 1 < K ¬ K = 0 K = 2 K = 0 K = 2
78 77 com12 ¬ 1 < K ¬ K = 0 K = 2 V Fin V G FriendGraph G RegUSGraph K K = 0 K = 2
79 78 exp4b ¬ 1 < K ¬ K = 0 K = 2 V Fin V G FriendGraph G RegUSGraph K K = 0 K = 2
80 simprl 1 < K V Fin V G FriendGraph G RegUSGraph K G FriendGraph
81 simpl V Fin V V Fin
82 81 ad2antlr 1 < K V Fin V G FriendGraph G RegUSGraph K V Fin
83 simpr V Fin V V
84 83 ad2antlr 1 < K V Fin V G FriendGraph G RegUSGraph K V
85 simpl 1 < K V Fin V 1 < K
86 85 26 anim12ci 1 < K V Fin V G FriendGraph G RegUSGraph K G RegUSGraph K 1 < K
87 1 frgrreggt1 G FriendGraph V Fin V G RegUSGraph K 1 < K K = 2
88 87 imp G FriendGraph V Fin V G RegUSGraph K 1 < K K = 2
89 80 82 84 86 88 syl31anc 1 < K V Fin V G FriendGraph G RegUSGraph K K = 2
90 89 olcd 1 < K V Fin V G FriendGraph G RegUSGraph K K = 0 K = 2
91 90 exp31 1 < K V Fin V G FriendGraph G RegUSGraph K K = 0 K = 2
92 2a1 K = 0 K = 2 V Fin V G FriendGraph G RegUSGraph K K = 0 K = 2
93 79 91 92 pm2.61ii V Fin V G FriendGraph G RegUSGraph K K = 0 K = 2