Metamath Proof Explorer


Theorem frlm0

Description: Zero in a free module (ring constraint is stronger than necessary, but allows use of frlmlss ). (Contributed by Stefan O'Rear, 4-Feb-2015)

Ref Expression
Hypotheses frlmval.f F=RfreeLModI
frlm0.z 0˙=0R
Assertion frlm0 RRingIWI×0˙=0F

Proof

Step Hyp Ref Expression
1 frlmval.f F=RfreeLModI
2 frlm0.z 0˙=0R
3 rlmlmod RRingringLModRLMod
4 eqid ringLModR𝑠I=ringLModR𝑠I
5 4 pwslmod ringLModRLModIWringLModR𝑠ILMod
6 3 5 sylan RRingIWringLModR𝑠ILMod
7 eqid BaseF=BaseF
8 eqid LSubSpringLModR𝑠I=LSubSpringLModR𝑠I
9 1 7 8 frlmlss RRingIWBaseFLSubSpringLModR𝑠I
10 8 lsssubg ringLModR𝑠ILModBaseFLSubSpringLModR𝑠IBaseFSubGrpringLModR𝑠I
11 6 9 10 syl2anc RRingIWBaseFSubGrpringLModR𝑠I
12 eqid ringLModR𝑠I𝑠BaseF=ringLModR𝑠I𝑠BaseF
13 eqid 0ringLModR𝑠I=0ringLModR𝑠I
14 12 13 subg0 BaseFSubGrpringLModR𝑠I0ringLModR𝑠I=0ringLModR𝑠I𝑠BaseF
15 11 14 syl RRingIW0ringLModR𝑠I=0ringLModR𝑠I𝑠BaseF
16 lmodgrp ringLModRLModringLModRGrp
17 grpmnd ringLModRGrpringLModRMnd
18 3 16 17 3syl RRingringLModRMnd
19 rlm0 0R=0ringLModR
20 2 19 eqtri 0˙=0ringLModR
21 4 20 pws0g ringLModRMndIWI×0˙=0ringLModR𝑠I
22 18 21 sylan RRingIWI×0˙=0ringLModR𝑠I
23 1 7 frlmpws RRingIWF=ringLModR𝑠I𝑠BaseF
24 23 fveq2d RRingIW0F=0ringLModR𝑠I𝑠BaseF
25 15 22 24 3eqtr4d RRingIWI×0˙=0F