Description: A free monoid is a monoid. (Contributed by Mario Carneiro, 27-Sep-2015) (Revised by Mario Carneiro, 27-Feb-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | frmdmnd.m | |
|
Assertion | frmdmnd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frmdmnd.m | |
|
2 | eqidd | |
|
3 | eqidd | |
|
4 | eqid | |
|
5 | eqid | |
|
6 | 1 4 5 | frmdadd | |
7 | 1 4 | frmdelbas | |
8 | 1 4 | frmdelbas | |
9 | ccatcl | |
|
10 | 7 8 9 | syl2an | |
11 | 6 10 | eqeltrd | |
12 | 11 | 3adant1 | |
13 | 1 4 | frmdbas | |
14 | 13 | 3ad2ant1 | |
15 | 12 14 | eleqtrrd | |
16 | simpr1 | |
|
17 | 16 7 | syl | |
18 | simpr2 | |
|
19 | 18 8 | syl | |
20 | simpr3 | |
|
21 | 1 4 | frmdelbas | |
22 | 20 21 | syl | |
23 | ccatass | |
|
24 | 17 19 22 23 | syl3anc | |
25 | 16 18 10 | syl2anc | |
26 | 13 | adantr | |
27 | 25 26 | eleqtrrd | |
28 | 1 4 5 | frmdadd | |
29 | 27 20 28 | syl2anc | |
30 | ccatcl | |
|
31 | 19 22 30 | syl2anc | |
32 | 31 26 | eleqtrrd | |
33 | 1 4 5 | frmdadd | |
34 | 16 32 33 | syl2anc | |
35 | 24 29 34 | 3eqtr4d | |
36 | 16 18 6 | syl2anc | |
37 | 36 | oveq1d | |
38 | 1 4 5 | frmdadd | |
39 | 18 20 38 | syl2anc | |
40 | 39 | oveq2d | |
41 | 35 37 40 | 3eqtr4d | |
42 | wrd0 | |
|
43 | 42 13 | eleqtrrid | |
44 | 1 4 5 | frmdadd | |
45 | 43 44 | sylan | |
46 | 7 | adantl | |
47 | ccatlid | |
|
48 | 46 47 | syl | |
49 | 45 48 | eqtrd | |
50 | 1 4 5 | frmdadd | |
51 | 50 | ancoms | |
52 | 43 51 | sylan | |
53 | ccatrid | |
|
54 | 46 53 | syl | |
55 | 52 54 | eqtrd | |
56 | 2 3 15 41 43 49 55 | ismndd | |