Metamath Proof Explorer


Theorem frsn

Description: Founded relation on a singleton. (Contributed by Mario Carneiro, 28-Dec-2014) (Revised by Mario Carneiro, 23-Apr-2015)

Ref Expression
Assertion frsn RelRRFrA¬ARA

Proof

Step Hyp Ref Expression
1 snprc ¬AVA=
2 fr0 RFr
3 freq2 A=RFrARFr
4 2 3 mpbiri A=RFrA
5 1 4 sylbi ¬AVRFrA
6 5 adantl RelR¬AVRFrA
7 brrelex1 RelRARAAV
8 7 stoic1a RelR¬AV¬ARA
9 6 8 2thd RelR¬AVRFrA¬ARA
10 9 ex RelR¬AVRFrA¬ARA
11 df-fr RFrAxxAxyxzx¬zRy
12 sssn xAx=x=A
13 neor x=x=Axx=A
14 12 13 sylbb xAxx=A
15 14 imp xAxx=A
16 15 adantl AVxAxx=A
17 eqimss x=AxA
18 17 adantl AVx=AxA
19 snnzg AVA
20 neeq1 x=AxA
21 19 20 syl5ibrcom AVx=Ax
22 21 imp AVx=Ax
23 18 22 jca AVx=AxAx
24 16 23 impbida AVxAxx=A
25 24 imbi1d AVxAxyxzx¬zRyx=Ayxzx¬zRy
26 25 albidv AVxxAxyxzx¬zRyxx=Ayxzx¬zRy
27 snex AV
28 raleq x=Azx¬zRyzA¬zRy
29 28 rexeqbi1dv x=Ayxzx¬zRyyAzA¬zRy
30 27 29 ceqsalv xx=Ayxzx¬zRyyAzA¬zRy
31 26 30 bitrdi AVxxAxyxzx¬zRyyAzA¬zRy
32 11 31 bitrid AVRFrAyAzA¬zRy
33 breq2 y=AzRyzRA
34 33 notbid y=A¬zRy¬zRA
35 34 ralbidv y=AzA¬zRyzA¬zRA
36 35 rexsng AVyAzA¬zRyzA¬zRA
37 breq1 z=AzRAARA
38 37 notbid z=A¬zRA¬ARA
39 38 ralsng AVzA¬zRA¬ARA
40 32 36 39 3bitrd AVRFrA¬ARA
41 10 40 pm2.61d2 RelRRFrA¬ARA