Metamath Proof Explorer


Theorem frsn

Description: Founded relation on a singleton. (Contributed by Mario Carneiro, 28-Dec-2014) (Revised by Mario Carneiro, 23-Apr-2015)

Ref Expression
Assertion frsn Rel R R Fr A ¬ A R A

Proof

Step Hyp Ref Expression
1 snprc ¬ A V A =
2 fr0 R Fr
3 freq2 A = R Fr A R Fr
4 2 3 mpbiri A = R Fr A
5 1 4 sylbi ¬ A V R Fr A
6 5 adantl Rel R ¬ A V R Fr A
7 brrelex1 Rel R A R A A V
8 7 stoic1a Rel R ¬ A V ¬ A R A
9 6 8 2thd Rel R ¬ A V R Fr A ¬ A R A
10 9 ex Rel R ¬ A V R Fr A ¬ A R A
11 df-fr R Fr A x x A x y x z x ¬ z R y
12 sssn x A x = x = A
13 neor x = x = A x x = A
14 12 13 sylbb x A x x = A
15 14 imp x A x x = A
16 15 adantl A V x A x x = A
17 eqimss x = A x A
18 17 adantl A V x = A x A
19 snnzg A V A
20 neeq1 x = A x A
21 19 20 syl5ibrcom A V x = A x
22 21 imp A V x = A x
23 18 22 jca A V x = A x A x
24 16 23 impbida A V x A x x = A
25 24 imbi1d A V x A x y x z x ¬ z R y x = A y x z x ¬ z R y
26 25 albidv A V x x A x y x z x ¬ z R y x x = A y x z x ¬ z R y
27 snex A V
28 raleq x = A z x ¬ z R y z A ¬ z R y
29 28 rexeqbi1dv x = A y x z x ¬ z R y y A z A ¬ z R y
30 27 29 ceqsalv x x = A y x z x ¬ z R y y A z A ¬ z R y
31 26 30 bitrdi A V x x A x y x z x ¬ z R y y A z A ¬ z R y
32 11 31 bitrid A V R Fr A y A z A ¬ z R y
33 breq2 y = A z R y z R A
34 33 notbid y = A ¬ z R y ¬ z R A
35 34 ralbidv y = A z A ¬ z R y z A ¬ z R A
36 35 rexsng A V y A z A ¬ z R y z A ¬ z R A
37 breq1 z = A z R A A R A
38 37 notbid z = A ¬ z R A ¬ A R A
39 38 ralsng A V z A ¬ z R A ¬ A R A
40 32 36 39 3bitrd A V R Fr A ¬ A R A
41 10 40 pm2.61d2 Rel R R Fr A ¬ A R A