Step |
Hyp |
Ref |
Expression |
1 |
|
brfs |
|
2 |
1
|
anbi1d |
|
3 |
|
simp11 |
|
4 |
|
simp12 |
|
5 |
|
simp13 |
|
6 |
|
simp21 |
|
7 |
|
brcolinear |
|
8 |
3 4 5 6 7
|
syl13anc |
|
9 |
|
simp23 |
|
10 |
|
simp31 |
|
11 |
|
simp32 |
|
12 |
|
cgr3permute2 |
|
13 |
3 4 5 6 9 10 11 12
|
syl133anc |
|
14 |
|
ancom |
|
15 |
14
|
a1i |
|
16 |
13 15
|
3anbi23d |
|
17 |
|
simp22 |
|
18 |
|
simp33 |
|
19 |
|
brofs2 |
|
20 |
3 5 4 6 17 10 9 11 18 19
|
syl333anc |
|
21 |
16 20
|
bitr4d |
|
22 |
|
necom |
|
23 |
22
|
a1i |
|
24 |
21 23
|
anbi12d |
|
25 |
|
5segofs |
|
26 |
3 5 4 6 17 10 9 11 18 25
|
syl333anc |
|
27 |
24 26
|
sylbid |
|
28 |
27
|
expd |
|
29 |
28
|
3expd |
|
30 |
|
btwncom |
|
31 |
3 5 6 4 30
|
syl13anc |
|
32 |
31
|
3anbi1d |
|
33 |
|
brofs2 |
|
34 |
32 33
|
bitr4d |
|
35 |
34
|
anbi1d |
|
36 |
|
5segofs |
|
37 |
35 36
|
sylbid |
|
38 |
37
|
expd |
|
39 |
38
|
3expd |
|
40 |
|
cgr3permute1 |
|
41 |
3 4 5 6 9 10 11 40
|
syl133anc |
|
42 |
41
|
3anbi2d |
|
43 |
|
brifs2 |
|
44 |
3 4 6 5 17 9 11 10 18 43
|
syl333anc |
|
45 |
42 44
|
bitr4d |
|
46 |
|
ifscgr |
|
47 |
3 4 6 5 17 9 11 10 18 46
|
syl333anc |
|
48 |
45 47
|
sylbid |
|
49 |
48
|
a1dd |
|
50 |
49
|
3expd |
|
51 |
29 39 50
|
3jaod |
|
52 |
8 51
|
sylbid |
|
53 |
52
|
3impd |
|
54 |
53
|
impd |
|
55 |
2 54
|
sylbid |
|