Metamath Proof Explorer


Theorem fscgr

Description: Congruence law for the general five segment configuration. Theorem 4.16 of Schwabhauser p. 37. (Contributed by Scott Fenton, 5-Oct-2013)

Ref Expression
Assertion fscgr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A B C D FiveSeg E F G H A B C D Cgr G H

Proof

Step Hyp Ref Expression
1 brfs N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A B C D FiveSeg E F G H A Colinear B C A B C Cgr3 E F G A D Cgr E H B D Cgr F H
2 1 anbi1d N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A B C D FiveSeg E F G H A B A Colinear B C A B C Cgr3 E F G A D Cgr E H B D Cgr F H A B
3 simp11 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N N
4 simp12 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A 𝔼 N
5 simp13 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B 𝔼 N
6 simp21 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N C 𝔼 N
7 brcolinear N A 𝔼 N B 𝔼 N C 𝔼 N A Colinear B C A Btwn B C B Btwn C A C Btwn A B
8 3 4 5 6 7 syl13anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A Colinear B C A Btwn B C B Btwn C A C Btwn A B
9 simp23 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N E 𝔼 N
10 simp31 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N F 𝔼 N
11 simp32 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N G 𝔼 N
12 cgr3permute2 N A 𝔼 N B 𝔼 N C 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N A B C Cgr3 E F G B A C Cgr3 F E G
13 3 4 5 6 9 10 11 12 syl133anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A B C Cgr3 E F G B A C Cgr3 F E G
14 ancom A D Cgr E H B D Cgr F H B D Cgr F H A D Cgr E H
15 14 a1i N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A D Cgr E H B D Cgr F H B D Cgr F H A D Cgr E H
16 13 15 3anbi23d N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A Btwn B C A B C Cgr3 E F G A D Cgr E H B D Cgr F H A Btwn B C B A C Cgr3 F E G B D Cgr F H A D Cgr E H
17 simp22 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N D 𝔼 N
18 simp33 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N H 𝔼 N
19 brofs2 N B 𝔼 N A 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N E 𝔼 N G 𝔼 N H 𝔼 N B A C D OuterFiveSeg F E G H A Btwn B C B A C Cgr3 F E G B D Cgr F H A D Cgr E H
20 3 5 4 6 17 10 9 11 18 19 syl333anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B A C D OuterFiveSeg F E G H A Btwn B C B A C Cgr3 F E G B D Cgr F H A D Cgr E H
21 16 20 bitr4d N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A Btwn B C A B C Cgr3 E F G A D Cgr E H B D Cgr F H B A C D OuterFiveSeg F E G H
22 necom A B B A
23 22 a1i N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A B B A
24 21 23 anbi12d N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A Btwn B C A B C Cgr3 E F G A D Cgr E H B D Cgr F H A B B A C D OuterFiveSeg F E G H B A
25 5segofs N B 𝔼 N A 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N E 𝔼 N G 𝔼 N H 𝔼 N B A C D OuterFiveSeg F E G H B A C D Cgr G H
26 3 5 4 6 17 10 9 11 18 25 syl333anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B A C D OuterFiveSeg F E G H B A C D Cgr G H
27 24 26 sylbid N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A Btwn B C A B C Cgr3 E F G A D Cgr E H B D Cgr F H A B C D Cgr G H
28 27 expd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A Btwn B C A B C Cgr3 E F G A D Cgr E H B D Cgr F H A B C D Cgr G H
29 28 3expd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A Btwn B C A B C Cgr3 E F G A D Cgr E H B D Cgr F H A B C D Cgr G H
30 btwncom N B 𝔼 N C 𝔼 N A 𝔼 N B Btwn C A B Btwn A C
31 3 5 6 4 30 syl13anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn C A B Btwn A C
32 31 3anbi1d N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn C A A B C Cgr3 E F G A D Cgr E H B D Cgr F H B Btwn A C A B C Cgr3 E F G A D Cgr E H B D Cgr F H
33 brofs2 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A B C D OuterFiveSeg E F G H B Btwn A C A B C Cgr3 E F G A D Cgr E H B D Cgr F H
34 32 33 bitr4d N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn C A A B C Cgr3 E F G A D Cgr E H B D Cgr F H A B C D OuterFiveSeg E F G H
35 34 anbi1d N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn C A A B C Cgr3 E F G A D Cgr E H B D Cgr F H A B A B C D OuterFiveSeg E F G H A B
36 5segofs N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A B C D OuterFiveSeg E F G H A B C D Cgr G H
37 35 36 sylbid N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn C A A B C Cgr3 E F G A D Cgr E H B D Cgr F H A B C D Cgr G H
38 37 expd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn C A A B C Cgr3 E F G A D Cgr E H B D Cgr F H A B C D Cgr G H
39 38 3expd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn C A A B C Cgr3 E F G A D Cgr E H B D Cgr F H A B C D Cgr G H
40 cgr3permute1 N A 𝔼 N B 𝔼 N C 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N A B C Cgr3 E F G A C B Cgr3 E G F
41 3 4 5 6 9 10 11 40 syl133anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A B C Cgr3 E F G A C B Cgr3 E G F
42 41 3anbi2d N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N C Btwn A B A B C Cgr3 E F G A D Cgr E H B D Cgr F H C Btwn A B A C B Cgr3 E G F A D Cgr E H B D Cgr F H
43 brifs2 N A 𝔼 N C 𝔼 N B 𝔼 N D 𝔼 N E 𝔼 N G 𝔼 N F 𝔼 N H 𝔼 N A C B D InnerFiveSeg E G F H C Btwn A B A C B Cgr3 E G F A D Cgr E H B D Cgr F H
44 3 4 6 5 17 9 11 10 18 43 syl333anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A C B D InnerFiveSeg E G F H C Btwn A B A C B Cgr3 E G F A D Cgr E H B D Cgr F H
45 42 44 bitr4d N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N C Btwn A B A B C Cgr3 E F G A D Cgr E H B D Cgr F H A C B D InnerFiveSeg E G F H
46 ifscgr N A 𝔼 N C 𝔼 N B 𝔼 N D 𝔼 N E 𝔼 N G 𝔼 N F 𝔼 N H 𝔼 N A C B D InnerFiveSeg E G F H C D Cgr G H
47 3 4 6 5 17 9 11 10 18 46 syl333anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A C B D InnerFiveSeg E G F H C D Cgr G H
48 45 47 sylbid N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N C Btwn A B A B C Cgr3 E F G A D Cgr E H B D Cgr F H C D Cgr G H
49 48 a1dd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N C Btwn A B A B C Cgr3 E F G A D Cgr E H B D Cgr F H A B C D Cgr G H
50 49 3expd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N C Btwn A B A B C Cgr3 E F G A D Cgr E H B D Cgr F H A B C D Cgr G H
51 29 39 50 3jaod N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A Btwn B C B Btwn C A C Btwn A B A B C Cgr3 E F G A D Cgr E H B D Cgr F H A B C D Cgr G H
52 8 51 sylbid N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A Colinear B C A B C Cgr3 E F G A D Cgr E H B D Cgr F H A B C D Cgr G H
53 52 3impd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A Colinear B C A B C Cgr3 E F G A D Cgr E H B D Cgr F H A B C D Cgr G H
54 53 impd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A Colinear B C A B C Cgr3 E F G A D Cgr E H B D Cgr F H A B C D Cgr G H
55 2 54 sylbid N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A B C D FiveSeg E F G H A B C D Cgr G H