Metamath Proof Explorer


Theorem fscgr

Description: Congruence law for the general five segment configuration. Theorem 4.16 of Schwabhauser p. 37. (Contributed by Scott Fenton, 5-Oct-2013)

Ref Expression
Assertion fscgr NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NABCDFiveSegEFGHABCDCgrGH

Proof

Step Hyp Ref Expression
1 brfs NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NABCDFiveSegEFGHAColinearBCABCCgr3EFGADCgrEHBDCgrFH
2 1 anbi1d NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NABCDFiveSegEFGHABAColinearBCABCCgr3EFGADCgrEHBDCgrFHAB
3 simp11 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NN
4 simp12 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NA𝔼N
5 simp13 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NB𝔼N
6 simp21 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NC𝔼N
7 brcolinear NA𝔼NB𝔼NC𝔼NAColinearBCABtwnBCBBtwnCACBtwnAB
8 3 4 5 6 7 syl13anc NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NAColinearBCABtwnBCBBtwnCACBtwnAB
9 simp23 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NE𝔼N
10 simp31 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NF𝔼N
11 simp32 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NG𝔼N
12 cgr3permute2 NA𝔼NB𝔼NC𝔼NE𝔼NF𝔼NG𝔼NABCCgr3EFGBACCgr3FEG
13 3 4 5 6 9 10 11 12 syl133anc NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NABCCgr3EFGBACCgr3FEG
14 ancom ADCgrEHBDCgrFHBDCgrFHADCgrEH
15 14 a1i NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NADCgrEHBDCgrFHBDCgrFHADCgrEH
16 13 15 3anbi23d NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NABtwnBCABCCgr3EFGADCgrEHBDCgrFHABtwnBCBACCgr3FEGBDCgrFHADCgrEH
17 simp22 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼ND𝔼N
18 simp33 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NH𝔼N
19 brofs2 NB𝔼NA𝔼NC𝔼ND𝔼NF𝔼NE𝔼NG𝔼NH𝔼NBACDOuterFiveSegFEGHABtwnBCBACCgr3FEGBDCgrFHADCgrEH
20 3 5 4 6 17 10 9 11 18 19 syl333anc NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NBACDOuterFiveSegFEGHABtwnBCBACCgr3FEGBDCgrFHADCgrEH
21 16 20 bitr4d NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NABtwnBCABCCgr3EFGADCgrEHBDCgrFHBACDOuterFiveSegFEGH
22 necom ABBA
23 22 a1i NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NABBA
24 21 23 anbi12d NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NABtwnBCABCCgr3EFGADCgrEHBDCgrFHABBACDOuterFiveSegFEGHBA
25 5segofs NB𝔼NA𝔼NC𝔼ND𝔼NF𝔼NE𝔼NG𝔼NH𝔼NBACDOuterFiveSegFEGHBACDCgrGH
26 3 5 4 6 17 10 9 11 18 25 syl333anc NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NBACDOuterFiveSegFEGHBACDCgrGH
27 24 26 sylbid NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NABtwnBCABCCgr3EFGADCgrEHBDCgrFHABCDCgrGH
28 27 expd NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NABtwnBCABCCgr3EFGADCgrEHBDCgrFHABCDCgrGH
29 28 3expd NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NABtwnBCABCCgr3EFGADCgrEHBDCgrFHABCDCgrGH
30 btwncom NB𝔼NC𝔼NA𝔼NBBtwnCABBtwnAC
31 3 5 6 4 30 syl13anc NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NBBtwnCABBtwnAC
32 31 3anbi1d NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NBBtwnCAABCCgr3EFGADCgrEHBDCgrFHBBtwnACABCCgr3EFGADCgrEHBDCgrFH
33 brofs2 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NABCDOuterFiveSegEFGHBBtwnACABCCgr3EFGADCgrEHBDCgrFH
34 32 33 bitr4d NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NBBtwnCAABCCgr3EFGADCgrEHBDCgrFHABCDOuterFiveSegEFGH
35 34 anbi1d NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NBBtwnCAABCCgr3EFGADCgrEHBDCgrFHABABCDOuterFiveSegEFGHAB
36 5segofs NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NABCDOuterFiveSegEFGHABCDCgrGH
37 35 36 sylbid NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NBBtwnCAABCCgr3EFGADCgrEHBDCgrFHABCDCgrGH
38 37 expd NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NBBtwnCAABCCgr3EFGADCgrEHBDCgrFHABCDCgrGH
39 38 3expd NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NBBtwnCAABCCgr3EFGADCgrEHBDCgrFHABCDCgrGH
40 cgr3permute1 NA𝔼NB𝔼NC𝔼NE𝔼NF𝔼NG𝔼NABCCgr3EFGACBCgr3EGF
41 3 4 5 6 9 10 11 40 syl133anc NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NABCCgr3EFGACBCgr3EGF
42 41 3anbi2d NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NCBtwnABABCCgr3EFGADCgrEHBDCgrFHCBtwnABACBCgr3EGFADCgrEHBDCgrFH
43 brifs2 NA𝔼NC𝔼NB𝔼ND𝔼NE𝔼NG𝔼NF𝔼NH𝔼NACBDInnerFiveSegEGFHCBtwnABACBCgr3EGFADCgrEHBDCgrFH
44 3 4 6 5 17 9 11 10 18 43 syl333anc NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NACBDInnerFiveSegEGFHCBtwnABACBCgr3EGFADCgrEHBDCgrFH
45 42 44 bitr4d NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NCBtwnABABCCgr3EFGADCgrEHBDCgrFHACBDInnerFiveSegEGFH
46 ifscgr NA𝔼NC𝔼NB𝔼ND𝔼NE𝔼NG𝔼NF𝔼NH𝔼NACBDInnerFiveSegEGFHCDCgrGH
47 3 4 6 5 17 9 11 10 18 46 syl333anc NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NACBDInnerFiveSegEGFHCDCgrGH
48 45 47 sylbid NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NCBtwnABABCCgr3EFGADCgrEHBDCgrFHCDCgrGH
49 48 a1dd NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NCBtwnABABCCgr3EFGADCgrEHBDCgrFHABCDCgrGH
50 49 3expd NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NCBtwnABABCCgr3EFGADCgrEHBDCgrFHABCDCgrGH
51 29 39 50 3jaod NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NABtwnBCBBtwnCACBtwnABABCCgr3EFGADCgrEHBDCgrFHABCDCgrGH
52 8 51 sylbid NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NAColinearBCABCCgr3EFGADCgrEHBDCgrFHABCDCgrGH
53 52 3impd NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NAColinearBCABCCgr3EFGADCgrEHBDCgrFHABCDCgrGH
54 53 impd NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NAColinearBCABCCgr3EFGADCgrEHBDCgrFHABCDCgrGH
55 2 54 sylbid NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NABCDFiveSegEFGHABCDCgrGH