| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsnex.1 |
|
| 2 |
|
fsn2g |
|
| 3 |
2
|
simprbda |
|
| 4 |
3
|
adantrr |
|
| 5 |
1
|
adantl |
|
| 6 |
|
simprr |
|
| 7 |
4 5 6
|
rspcedvd |
|
| 8 |
7
|
ex |
|
| 9 |
8
|
exlimdv |
|
| 10 |
9
|
imp |
|
| 11 |
|
nfv |
|
| 12 |
|
nfre1 |
|
| 13 |
11 12
|
nfan |
|
| 14 |
|
f1osng |
|
| 15 |
14
|
elvd |
|
| 16 |
15
|
ad3antrrr |
|
| 17 |
|
f1of |
|
| 18 |
16 17
|
syl |
|
| 19 |
|
simplr |
|
| 20 |
19
|
snssd |
|
| 21 |
18 20
|
fssd |
|
| 22 |
|
fvsng |
|
| 23 |
22
|
elvd |
|
| 24 |
23
|
eqcomd |
|
| 25 |
24
|
ad3antrrr |
|
| 26 |
|
snex |
|
| 27 |
|
feq1 |
|
| 28 |
|
fveq1 |
|
| 29 |
28
|
eqeq2d |
|
| 30 |
27 29
|
anbi12d |
|
| 31 |
26 30
|
spcev |
|
| 32 |
21 25 31
|
syl2anc |
|
| 33 |
|
simprl |
|
| 34 |
|
simpllr |
|
| 35 |
|
simplrr |
|
| 36 |
35 1
|
syl |
|
| 37 |
34 36
|
mpbid |
|
| 38 |
33 37
|
mpdan |
|
| 39 |
33 38
|
jca |
|
| 40 |
39
|
ex |
|
| 41 |
40
|
eximdv |
|
| 42 |
32 41
|
mpd |
|
| 43 |
|
simpr |
|
| 44 |
13 42 43
|
r19.29af |
|
| 45 |
10 44
|
impbida |
|