Description: Relate a function with a singleton as domain and one variable. (Contributed by Thierry Arnoux, 12-Jul-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | fsnex.1 | |
|
Assertion | fsnex | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsnex.1 | |
|
2 | fsn2g | |
|
3 | 2 | simprbda | |
4 | 3 | adantrr | |
5 | 1 | adantl | |
6 | simprr | |
|
7 | 4 5 6 | rspcedvd | |
8 | 7 | ex | |
9 | 8 | exlimdv | |
10 | 9 | imp | |
11 | nfv | |
|
12 | nfre1 | |
|
13 | 11 12 | nfan | |
14 | f1osng | |
|
15 | 14 | elvd | |
16 | 15 | ad3antrrr | |
17 | f1of | |
|
18 | 16 17 | syl | |
19 | simplr | |
|
20 | 19 | snssd | |
21 | 18 20 | fssd | |
22 | fvsng | |
|
23 | 22 | elvd | |
24 | 23 | eqcomd | |
25 | 24 | ad3antrrr | |
26 | snex | |
|
27 | feq1 | |
|
28 | fveq1 | |
|
29 | 28 | eqeq2d | |
30 | 27 29 | anbi12d | |
31 | 26 30 | spcev | |
32 | 21 25 31 | syl2anc | |
33 | simprl | |
|
34 | simpllr | |
|
35 | simplrr | |
|
36 | 35 1 | syl | |
37 | 34 36 | mpbid | |
38 | 33 37 | mpdan | |
39 | 33 38 | jca | |
40 | 39 | ex | |
41 | 40 | eximdv | |
42 | 32 41 | mpd | |
43 | simpr | |
|
44 | 13 42 43 | r19.29af | |
45 | 10 44 | impbida | |