Metamath Proof Explorer


Theorem fsnex

Description: Relate a function with a singleton as domain and one variable. (Contributed by Thierry Arnoux, 12-Jul-2020)

Ref Expression
Hypothesis fsnex.1 x=fAψφ
Assertion fsnex AVff:ADφxDψ

Proof

Step Hyp Ref Expression
1 fsnex.1 x=fAψφ
2 fsn2g AVf:ADfADf=AfA
3 2 simprbda AVf:ADfAD
4 3 adantrr AVf:ADφfAD
5 1 adantl AVf:ADφx=fAψφ
6 simprr AVf:ADφφ
7 4 5 6 rspcedvd AVf:ADφxDψ
8 7 ex AVf:ADφxDψ
9 8 exlimdv AVff:ADφxDψ
10 9 imp AVff:ADφxDψ
11 nfv xAV
12 nfre1 xxDψ
13 11 12 nfan xAVxDψ
14 f1osng AVxVAx:A1-1 ontox
15 14 elvd AVAx:A1-1 ontox
16 15 ad3antrrr AVxDψxDψAx:A1-1 ontox
17 f1of Ax:A1-1 ontoxAx:Ax
18 16 17 syl AVxDψxDψAx:Ax
19 simplr AVxDψxDψxD
20 19 snssd AVxDψxDψxD
21 18 20 fssd AVxDψxDψAx:AD
22 fvsng AVxVAxA=x
23 22 elvd AVAxA=x
24 23 eqcomd AVx=AxA
25 24 ad3antrrr AVxDψxDψx=AxA
26 snex AxV
27 feq1 f=Axf:ADAx:AD
28 fveq1 f=AxfA=AxA
29 28 eqeq2d f=Axx=fAx=AxA
30 27 29 anbi12d f=Axf:ADx=fAAx:ADx=AxA
31 26 30 spcev Ax:ADx=AxAff:ADx=fA
32 21 25 31 syl2anc AVxDψxDψff:ADx=fA
33 simprl AVxDψxDψf:ADx=fAf:AD
34 simpllr AVxDψxDψf:ADx=fAf:ADψ
35 simplrr AVxDψxDψf:ADx=fAf:ADx=fA
36 35 1 syl AVxDψxDψf:ADx=fAf:ADψφ
37 34 36 mpbid AVxDψxDψf:ADx=fAf:ADφ
38 33 37 mpdan AVxDψxDψf:ADx=fAφ
39 33 38 jca AVxDψxDψf:ADx=fAf:ADφ
40 39 ex AVxDψxDψf:ADx=fAf:ADφ
41 40 eximdv AVxDψxDψff:ADx=fAff:ADφ
42 32 41 mpd AVxDψxDψff:ADφ
43 simpr AVxDψxDψ
44 13 42 43 r19.29af AVxDψff:ADφ
45 10 44 impbida AVff:ADφxDψ