Metamath Proof Explorer


Theorem fsubbas

Description: A condition for a set to generate a filter base. (Contributed by Jeff Hankins, 2-Sep-2009) (Revised by Stefan O'Rear, 2-Aug-2015)

Ref Expression
Assertion fsubbas XVfiAfBasXA𝒫XA¬fiA

Proof

Step Hyp Ref Expression
1 fbasne0 fiAfBasXfiA
2 fvprc ¬AVfiA=
3 2 necon1ai fiAAV
4 1 3 syl fiAfBasXAV
5 ssfii AVAfiA
6 4 5 syl fiAfBasXAfiA
7 fbsspw fiAfBasXfiA𝒫X
8 6 7 sstrd fiAfBasXA𝒫X
9 fieq0 AVA=fiA=
10 9 necon3bid AVAfiA
11 10 biimpar AVfiAA
12 4 1 11 syl2anc fiAfBasXA
13 0nelfb fiAfBasX¬fiA
14 8 12 13 3jca fiAfBasXA𝒫XA¬fiA
15 simpr1 XVA𝒫XA¬fiAA𝒫X
16 fipwss A𝒫XfiA𝒫X
17 15 16 syl XVA𝒫XA¬fiAfiA𝒫X
18 pwexg XV𝒫XV
19 18 adantr XVA𝒫XA¬fiA𝒫XV
20 19 15 ssexd XVA𝒫XA¬fiAAV
21 simpr2 XVA𝒫XA¬fiAA
22 10 biimpa AVAfiA
23 20 21 22 syl2anc XVA𝒫XA¬fiAfiA
24 simpr3 XVA𝒫XA¬fiA¬fiA
25 df-nel fiA¬fiA
26 24 25 sylibr XVA𝒫XA¬fiAfiA
27 fiin xfiAyfiAxyfiA
28 ssid xyxy
29 sseq1 z=xyzxyxyxy
30 29 rspcev xyfiAxyxyzfiAzxy
31 27 28 30 sylancl xfiAyfiAzfiAzxy
32 31 rgen2 xfiAyfiAzfiAzxy
33 32 a1i XVA𝒫XA¬fiAxfiAyfiAzfiAzxy
34 23 26 33 3jca XVA𝒫XA¬fiAfiAfiAxfiAyfiAzfiAzxy
35 isfbas2 XVfiAfBasXfiA𝒫XfiAfiAxfiAyfiAzfiAzxy
36 35 adantr XVA𝒫XA¬fiAfiAfBasXfiA𝒫XfiAfiAxfiAyfiAzfiAzxy
37 17 34 36 mpbir2and XVA𝒫XA¬fiAfiAfBasX
38 37 ex XVA𝒫XA¬fiAfiAfBasX
39 14 38 impbid2 XVfiAfBasXA𝒫XA¬fiA