| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fbasne0 |
|
| 2 |
|
fvprc |
|
| 3 |
2
|
necon1ai |
|
| 4 |
1 3
|
syl |
|
| 5 |
|
ssfii |
|
| 6 |
4 5
|
syl |
|
| 7 |
|
fbsspw |
|
| 8 |
6 7
|
sstrd |
|
| 9 |
|
fieq0 |
|
| 10 |
9
|
necon3bid |
|
| 11 |
10
|
biimpar |
|
| 12 |
4 1 11
|
syl2anc |
|
| 13 |
|
0nelfb |
|
| 14 |
8 12 13
|
3jca |
|
| 15 |
|
simpr1 |
|
| 16 |
|
fipwss |
|
| 17 |
15 16
|
syl |
|
| 18 |
|
pwexg |
|
| 19 |
18
|
adantr |
|
| 20 |
19 15
|
ssexd |
|
| 21 |
|
simpr2 |
|
| 22 |
10
|
biimpa |
|
| 23 |
20 21 22
|
syl2anc |
|
| 24 |
|
simpr3 |
|
| 25 |
|
df-nel |
|
| 26 |
24 25
|
sylibr |
|
| 27 |
|
fiin |
|
| 28 |
|
ssid |
|
| 29 |
|
sseq1 |
|
| 30 |
29
|
rspcev |
|
| 31 |
27 28 30
|
sylancl |
|
| 32 |
31
|
rgen2 |
|
| 33 |
32
|
a1i |
|
| 34 |
23 26 33
|
3jca |
|
| 35 |
|
isfbas2 |
|
| 36 |
35
|
adantr |
|
| 37 |
17 34 36
|
mpbir2and |
|
| 38 |
37
|
ex |
|
| 39 |
14 38
|
impbid2 |
|