Metamath Proof Explorer


Theorem fsummulc1f

Description: Closure of a finite sum of complex numbers A ( k ) . A version of fsummulc1 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses fsummulc1f.ph kφ
fsummulclf.a φAFin
fsummulclf.c φC
fsummulclf.b φkAB
Assertion fsummulc1f φkABC=kABC

Proof

Step Hyp Ref Expression
1 fsummulc1f.ph kφ
2 fsummulclf.a φAFin
3 fsummulclf.c φC
4 fsummulclf.b φkAB
5 csbeq1a k=jB=j/kB
6 nfcv _jA
7 nfcv _kA
8 nfcv _jB
9 nfcsb1v _kj/kB
10 5 6 7 8 9 cbvsum kAB=jAj/kB
11 10 oveq1i kABC=jAj/kBC
12 11 a1i φkABC=jAj/kBC
13 nfv kjA
14 1 13 nfan kφjA
15 9 nfel1 kj/kB
16 14 15 nfim kφjAj/kB
17 eleq1w k=jkAjA
18 17 anbi2d k=jφkAφjA
19 5 eleq1d k=jBj/kB
20 18 19 imbi12d k=jφkABφjAj/kB
21 16 20 4 chvarfv φjAj/kB
22 2 3 21 fsummulc1 φjAj/kBC=jAj/kBC
23 eqcom k=jj=k
24 23 imbi1i k=jB=j/kBj=kB=j/kB
25 eqcom B=j/kBj/kB=B
26 25 imbi2i j=kB=j/kBj=kj/kB=B
27 24 26 bitri k=jB=j/kBj=kj/kB=B
28 5 27 mpbi j=kj/kB=B
29 28 oveq1d j=kj/kBC=BC
30 nfcv _k×
31 nfcv _kC
32 9 30 31 nfov _kj/kBC
33 nfcv _jBC
34 29 7 6 32 33 cbvsum jAj/kBC=kABC
35 34 a1i φjAj/kBC=kABC
36 12 22 35 3eqtrd φkABC=kABC