Description: Closure of a finite sum of complex numbers A ( k ) . A version of fsummulc1 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fsummulc1f.ph | |
|
fsummulclf.a | |
||
fsummulclf.c | |
||
fsummulclf.b | |
||
Assertion | fsummulc1f | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsummulc1f.ph | |
|
2 | fsummulclf.a | |
|
3 | fsummulclf.c | |
|
4 | fsummulclf.b | |
|
5 | csbeq1a | |
|
6 | nfcv | |
|
7 | nfcv | |
|
8 | nfcv | |
|
9 | nfcsb1v | |
|
10 | 5 6 7 8 9 | cbvsum | |
11 | 10 | oveq1i | |
12 | 11 | a1i | |
13 | nfv | |
|
14 | 1 13 | nfan | |
15 | 9 | nfel1 | |
16 | 14 15 | nfim | |
17 | eleq1w | |
|
18 | 17 | anbi2d | |
19 | 5 | eleq1d | |
20 | 18 19 | imbi12d | |
21 | 16 20 4 | chvarfv | |
22 | 2 3 21 | fsummulc1 | |
23 | eqcom | |
|
24 | 23 | imbi1i | |
25 | eqcom | |
|
26 | 25 | imbi2i | |
27 | 24 26 | bitri | |
28 | 5 27 | mpbi | |
29 | 28 | oveq1d | |
30 | nfcv | |
|
31 | nfcv | |
|
32 | 9 30 31 | nfov | |
33 | nfcv | |
|
34 | 29 7 6 32 33 | cbvsum | |
35 | 34 | a1i | |
36 | 12 22 35 | 3eqtrd | |