Metamath Proof Explorer


Theorem fsumsplit1

Description: Separate out a term in a finite sum. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses fsumsplit1.kph kφ
fsumsplit1.kd _kD
fsumsplit1.a φAFin
fsumsplit1.b φkAB
fsumsplit1.c φCA
fsumsplit1.bd k=CB=D
Assertion fsumsplit1 φkAB=D+kACB

Proof

Step Hyp Ref Expression
1 fsumsplit1.kph kφ
2 fsumsplit1.kd _kD
3 fsumsplit1.a φAFin
4 fsumsplit1.b φkAB
5 fsumsplit1.c φCA
6 fsumsplit1.bd k=CB=D
7 uncom ACC=CAC
8 7 a1i φACC=CAC
9 5 snssd φCA
10 undif CACAC=A
11 9 10 sylib φCAC=A
12 eqidd φA=A
13 8 11 12 3eqtrrd φA=ACC
14 13 sumeq1d φkAB=kACCB
15 diffi AFinACFin
16 3 15 syl φACFin
17 neldifsnd φ¬CAC
18 simpl φkACφ
19 eldifi kACkA
20 19 adantl φkACkA
21 18 20 4 syl2anc φkACB
22 2 a1i φ_kD
23 simpr φk=Ck=C
24 23 6 syl φk=CB=D
25 1 22 5 24 csbiedf φC/kB=D
26 25 eqcomd φD=C/kB
27 5 ancli φφCA
28 nfcv _kC
29 nfv kCA
30 1 29 nfan kφCA
31 28 nfcsb1 _kC/kB
32 nfcv _k
33 31 32 nfel kC/kB
34 30 33 nfim kφCAC/kB
35 eleq1 k=CkACA
36 35 anbi2d k=CφkAφCA
37 csbeq1a k=CB=C/kB
38 37 eleq1d k=CBC/kB
39 36 38 imbi12d k=CφkABφCAC/kB
40 28 34 39 4 vtoclgf CAφCAC/kB
41 5 27 40 sylc φC/kB
42 26 41 eqeltrd φD
43 1 2 16 5 17 21 6 42 fsumsplitsn φkACCB=kACB+D
44 1 16 21 fsumclf φkACB
45 44 42 addcomd φkACB+D=D+kACB
46 14 43 45 3eqtrd φkAB=D+kACB