Description: Separate out a term in a finite sum. (Contributed by Glauco Siliprandi, 5-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fsumsplit1.kph | |
|
fsumsplit1.kd | |
||
fsumsplit1.a | |
||
fsumsplit1.b | |
||
fsumsplit1.c | |
||
fsumsplit1.bd | |
||
Assertion | fsumsplit1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsumsplit1.kph | |
|
2 | fsumsplit1.kd | |
|
3 | fsumsplit1.a | |
|
4 | fsumsplit1.b | |
|
5 | fsumsplit1.c | |
|
6 | fsumsplit1.bd | |
|
7 | uncom | |
|
8 | 7 | a1i | |
9 | 5 | snssd | |
10 | undif | |
|
11 | 9 10 | sylib | |
12 | eqidd | |
|
13 | 8 11 12 | 3eqtrrd | |
14 | 13 | sumeq1d | |
15 | diffi | |
|
16 | 3 15 | syl | |
17 | neldifsnd | |
|
18 | simpl | |
|
19 | eldifi | |
|
20 | 19 | adantl | |
21 | 18 20 4 | syl2anc | |
22 | 2 | a1i | |
23 | simpr | |
|
24 | 23 6 | syl | |
25 | 1 22 5 24 | csbiedf | |
26 | 25 | eqcomd | |
27 | 5 | ancli | |
28 | nfcv | |
|
29 | nfv | |
|
30 | 1 29 | nfan | |
31 | 28 | nfcsb1 | |
32 | nfcv | |
|
33 | 31 32 | nfel | |
34 | 30 33 | nfim | |
35 | eleq1 | |
|
36 | 35 | anbi2d | |
37 | csbeq1a | |
|
38 | 37 | eleq1d | |
39 | 36 38 | imbi12d | |
40 | 28 34 39 4 | vtoclgf | |
41 | 5 27 40 | sylc | |
42 | 26 41 | eqeltrd | |
43 | 1 2 16 5 17 21 6 42 | fsumsplitsn | |
44 | 1 16 21 | fsumclf | |
45 | 44 42 | addcomd | |
46 | 14 43 45 | 3eqtrd | |