Metamath Proof Explorer


Theorem fsuppco

Description: The composition of a 1-1 function with a finitely supported function is finitely supported. (Contributed by AV, 28-May-2019)

Ref Expression
Hypotheses fsuppco.f φfinSuppZF
fsuppco.g φG:X1-1Y
fsuppco.z φZW
fsuppco.v φFV
Assertion fsuppco φfinSuppZFG

Proof

Step Hyp Ref Expression
1 fsuppco.f φfinSuppZF
2 fsuppco.g φG:X1-1Y
3 fsuppco.z φZW
4 fsuppco.v φFV
5 df-f1 G:X1-1YG:XYFunG-1
6 5 simprbi G:X1-1YFunG-1
7 2 6 syl φFunG-1
8 cofunex2g FVFunG-1FGV
9 4 7 8 syl2anc φFGV
10 suppimacnv FGVZWFGsuppZ=FG-1VZ
11 9 3 10 syl2anc φFGsuppZ=FG-1VZ
12 suppimacnv FVZWFsuppZ=F-1VZ
13 4 3 12 syl2anc φFsuppZ=F-1VZ
14 1 fsuppimpd φFsuppZFin
15 13 14 eqeltrrd φF-1VZFin
16 15 2 fsuppcolem φFG-1VZFin
17 11 16 eqeltrd φFGsuppZFin
18 fsuppimp finSuppZFFunFFsuppZFin
19 18 simpld finSuppZFFunF
20 1 19 syl φFunF
21 f1fun G:X1-1YFunG
22 2 21 syl φFunG
23 funco FunFFunGFunFG
24 20 22 23 syl2anc φFunFG
25 funisfsupp FunFGFGVZWfinSuppZFGFGsuppZFin
26 24 9 3 25 syl3anc φfinSuppZFGFGsuppZFin
27 17 26 mpbird φfinSuppZFG