Metamath Proof Explorer


Theorem fsuppssindlem2

Description: Lemma for fsuppssind . Write a function as a union. (Contributed by SN, 15-Jul-2024)

Ref Expression
Hypotheses fsuppssindlem2.b φ B W
fsuppssindlem2.v φ I V
fsuppssindlem2.s φ S I
Assertion fsuppssindlem2 φ F f B S | x I if x S f x 0 ˙ H F : S B F I S × 0 ˙ H

Proof

Step Hyp Ref Expression
1 fsuppssindlem2.b φ B W
2 fsuppssindlem2.v φ I V
3 fsuppssindlem2.s φ S I
4 fveq1 f = F f x = F x
5 4 ifeq1d f = F if x S f x 0 ˙ = if x S F x 0 ˙
6 5 mpteq2dv f = F x I if x S f x 0 ˙ = x I if x S F x 0 ˙
7 6 eleq1d f = F x I if x S f x 0 ˙ H x I if x S F x 0 ˙ H
8 7 elrab F f B S | x I if x S f x 0 ˙ H F B S x I if x S F x 0 ˙ H
9 2 3 ssexd φ S V
10 1 9 elmapd φ F B S F : S B
11 10 anbi1d φ F B S x I if x S F x 0 ˙ H F : S B x I if x S F x 0 ˙ H
12 partfun x I if x S F x 0 ˙ = x I S F x x I S 0 ˙
13 sseqin2 S I I S = S
14 3 13 sylib φ I S = S
15 14 mpteq1d φ x I S F x = x S F x
16 15 adantr φ F : S B x I S F x = x S F x
17 simpr φ F : S B F : S B
18 17 feqmptd φ F : S B F = x S F x
19 16 18 eqtr4d φ F : S B x I S F x = F
20 fconstmpt I S × 0 ˙ = x I S 0 ˙
21 20 eqcomi x I S 0 ˙ = I S × 0 ˙
22 21 a1i φ F : S B x I S 0 ˙ = I S × 0 ˙
23 19 22 uneq12d φ F : S B x I S F x x I S 0 ˙ = F I S × 0 ˙
24 12 23 syl5eq φ F : S B x I if x S F x 0 ˙ = F I S × 0 ˙
25 24 eleq1d φ F : S B x I if x S F x 0 ˙ H F I S × 0 ˙ H
26 25 pm5.32da φ F : S B x I if x S F x 0 ˙ H F : S B F I S × 0 ˙ H
27 11 26 bitrd φ F B S x I if x S F x 0 ˙ H F : S B F I S × 0 ˙ H
28 8 27 syl5bb φ F f B S | x I if x S f x 0 ˙ H F : S B F I S × 0 ˙ H