Metamath Proof Explorer


Theorem fsuppssindlem2

Description: Lemma for fsuppssind . Write a function as a union. (Contributed by SN, 15-Jul-2024)

Ref Expression
Hypotheses fsuppssindlem2.b φBW
fsuppssindlem2.v φIV
fsuppssindlem2.s φSI
Assertion fsuppssindlem2 φFfBS|xIifxSfx0˙HF:SBFIS×0˙H

Proof

Step Hyp Ref Expression
1 fsuppssindlem2.b φBW
2 fsuppssindlem2.v φIV
3 fsuppssindlem2.s φSI
4 fveq1 f=Ffx=Fx
5 4 ifeq1d f=FifxSfx0˙=ifxSFx0˙
6 5 mpteq2dv f=FxIifxSfx0˙=xIifxSFx0˙
7 6 eleq1d f=FxIifxSfx0˙HxIifxSFx0˙H
8 7 elrab FfBS|xIifxSfx0˙HFBSxIifxSFx0˙H
9 2 3 ssexd φSV
10 1 9 elmapd φFBSF:SB
11 10 anbi1d φFBSxIifxSFx0˙HF:SBxIifxSFx0˙H
12 partfun xIifxSFx0˙=xISFxxIS0˙
13 sseqin2 SIIS=S
14 3 13 sylib φIS=S
15 14 mpteq1d φxISFx=xSFx
16 15 adantr φF:SBxISFx=xSFx
17 simpr φF:SBF:SB
18 17 feqmptd φF:SBF=xSFx
19 16 18 eqtr4d φF:SBxISFx=F
20 fconstmpt IS×0˙=xIS0˙
21 20 eqcomi xIS0˙=IS×0˙
22 21 a1i φF:SBxIS0˙=IS×0˙
23 19 22 uneq12d φF:SBxISFxxIS0˙=FIS×0˙
24 12 23 eqtrid φF:SBxIifxSFx0˙=FIS×0˙
25 24 eleq1d φF:SBxIifxSFx0˙HFIS×0˙H
26 25 pm5.32da φF:SBxIifxSFx0˙HF:SBFIS×0˙H
27 11 26 bitrd φFBSxIifxSFx0˙HF:SBFIS×0˙H
28 8 27 bitrid φFfBS|xIifxSfx0˙HF:SBFIS×0˙H