Description: Lemma for fsuppssind . Write a function as a union. (Contributed by SN, 15-Jul-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fsuppssindlem2.b | |
|
fsuppssindlem2.v | |
||
fsuppssindlem2.s | |
||
Assertion | fsuppssindlem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsuppssindlem2.b | |
|
2 | fsuppssindlem2.v | |
|
3 | fsuppssindlem2.s | |
|
4 | fveq1 | |
|
5 | 4 | ifeq1d | |
6 | 5 | mpteq2dv | |
7 | 6 | eleq1d | |
8 | 7 | elrab | |
9 | 2 3 | ssexd | |
10 | 1 9 | elmapd | |
11 | 10 | anbi1d | |
12 | partfun | |
|
13 | sseqin2 | |
|
14 | 3 13 | sylib | |
15 | 14 | mpteq1d | |
16 | 15 | adantr | |
17 | simpr | |
|
18 | 17 | feqmptd | |
19 | 16 18 | eqtr4d | |
20 | fconstmpt | |
|
21 | 20 | eqcomi | |
22 | 21 | a1i | |
23 | 19 22 | uneq12d | |
24 | 12 23 | eqtrid | |
25 | 24 | eleq1d | |
26 | 25 | pm5.32da | |
27 | 11 26 | bitrd | |
28 | 8 27 | bitrid | |