Metamath Proof Explorer


Theorem fthepi

Description: A faithful functor reflects epimorphisms. (Contributed by Mario Carneiro, 27-Jan-2017)

Ref Expression
Hypotheses fthmon.b B=BaseC
fthmon.h H=HomC
fthmon.f φFCFaithDG
fthmon.x φXB
fthmon.y φYB
fthmon.r φRXHY
fthepi.e E=EpiC
fthepi.p P=EpiD
fthepi.1 φXGYRFXPFY
Assertion fthepi φRXEY

Proof

Step Hyp Ref Expression
1 fthmon.b B=BaseC
2 fthmon.h H=HomC
3 fthmon.f φFCFaithDG
4 fthmon.x φXB
5 fthmon.y φYB
6 fthmon.r φRXHY
7 fthepi.e E=EpiC
8 fthepi.p P=EpiD
9 fthepi.1 φXGYRFXPFY
10 eqid oppCatC=oppCatC
11 10 1 oppcbas B=BaseoppCatC
12 eqid HomoppCatC=HomoppCatC
13 eqid oppCatD=oppCatD
14 10 13 3 fthoppc φFoppCatCFaithoppCatDtposG
15 2 10 oppchom YHomoppCatCX=XHY
16 6 15 eleqtrrdi φRYHomoppCatCX
17 eqid MonooppCatC=MonooppCatC
18 eqid MonooppCatD=MonooppCatD
19 ovtpos YtposGX=XGY
20 19 fveq1i YtposGXR=XGYR
21 20 9 eqeltrid φYtposGXRFXPFY
22 fthfunc CFaithDCFuncD
23 22 ssbri FCFaithDGFCFuncDG
24 3 23 syl φFCFuncDG
25 df-br FCFuncDGFGCFuncD
26 24 25 sylib φFGCFuncD
27 funcrcl FGCFuncDCCatDCat
28 26 27 syl φCCatDCat
29 28 simprd φDCat
30 13 29 18 8 oppcmon φFYMonooppCatDFX=FXPFY
31 21 30 eleqtrrd φYtposGXRFYMonooppCatDFX
32 11 12 14 5 4 16 17 18 31 fthmon φRYMonooppCatCX
33 28 simpld φCCat
34 10 33 17 7 oppcmon φYMonooppCatCX=XEY
35 32 34 eleqtrd φRXEY