Metamath Proof Explorer


Theorem fthinv

Description: A faithful functor reflects inverses. (Contributed by Mario Carneiro, 27-Jan-2017)

Ref Expression
Hypotheses fthsect.b B=BaseC
fthsect.h H=HomC
fthsect.f φFCFaithDG
fthsect.x φXB
fthsect.y φYB
fthsect.m φMXHY
fthsect.n φNYHX
fthinv.s I=InvC
fthinv.t J=InvD
Assertion fthinv φMXIYNXGYMFXJFYYGXN

Proof

Step Hyp Ref Expression
1 fthsect.b B=BaseC
2 fthsect.h H=HomC
3 fthsect.f φFCFaithDG
4 fthsect.x φXB
5 fthsect.y φYB
6 fthsect.m φMXHY
7 fthsect.n φNYHX
8 fthinv.s I=InvC
9 fthinv.t J=InvD
10 eqid SectC=SectC
11 eqid SectD=SectD
12 1 2 3 4 5 6 7 10 11 fthsect φMXSectCYNXGYMFXSectDFYYGXN
13 1 2 3 5 4 7 6 10 11 fthsect φNYSectCXMYGXNFYSectDFXXGYM
14 12 13 anbi12d φMXSectCYNNYSectCXMXGYMFXSectDFYYGXNYGXNFYSectDFXXGYM
15 fthfunc CFaithDCFuncD
16 15 ssbri FCFaithDGFCFuncDG
17 3 16 syl φFCFuncDG
18 df-br FCFuncDGFGCFuncD
19 17 18 sylib φFGCFuncD
20 funcrcl FGCFuncDCCatDCat
21 19 20 syl φCCatDCat
22 21 simpld φCCat
23 1 8 22 4 5 10 isinv φMXIYNMXSectCYNNYSectCXM
24 eqid BaseD=BaseD
25 21 simprd φDCat
26 1 24 17 funcf1 φF:BBaseD
27 26 4 ffvelcdmd φFXBaseD
28 26 5 ffvelcdmd φFYBaseD
29 24 9 25 27 28 11 isinv φXGYMFXJFYYGXNXGYMFXSectDFYYGXNYGXNFYSectDFXXGYM
30 14 23 29 3bitr4d φMXIYNXGYMFXJFYYGXN