Metamath Proof Explorer


Theorem fucocolem2

Description: Lemma for fucoco . The composed natural transformations are mapped to composition of 4 natural transformations. (Contributed by Zhi Wang, 2-Oct-2025)

Ref Expression
Hypotheses fucoco.r φ R F D Nat E K
fucoco.s φ S G C Nat D L
fucoco.u φ U K D Nat E M
fucoco.v φ V L C Nat D N
fucoco.o No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) with typecode |-
fucoco.x φ X = F G
fucoco.y φ Y = K L
fucoco.z φ Z = M N
fucoco.a φ A = R S
fucoco.b φ B = U V
fucocolem2.t T = D FuncCat E × c C FuncCat D
fucocolem2.ot · ˙ = comp T
fucocolem2.od ˙ = comp D
Assertion fucocolem2 φ X P Z B X Y · ˙ Z A = x Base C U 1 st N x 1 st F 1 st N x 1 st K 1 st N x comp E 1 st M 1 st N x R 1 st N x 1 st F 1 st G x 1 st F 1 st N x comp E 1 st M 1 st N x 1 st G x 2 nd F 1 st N x V x 1 st G x 1 st L x ˙ 1 st N x S x

Proof

Step Hyp Ref Expression
1 fucoco.r φ R F D Nat E K
2 fucoco.s φ S G C Nat D L
3 fucoco.u φ U K D Nat E M
4 fucoco.v φ V L C Nat D N
5 fucoco.o Could not format ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) : No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) with typecode |-
6 fucoco.x φ X = F G
7 fucoco.y φ Y = K L
8 fucoco.z φ Z = M N
9 fucoco.a φ A = R S
10 fucoco.b φ B = U V
11 fucocolem2.t T = D FuncCat E × c C FuncCat D
12 fucocolem2.ot · ˙ = comp T
13 fucocolem2.od ˙ = comp D
14 6 7 opeq12d φ X Y = F G K L
15 14 8 oveq12d φ X Y · ˙ Z = F G K L · ˙ M N
16 15 10 9 oveq123d φ B X Y · ˙ Z A = U V F G K L · ˙ M N R S
17 eqid Base D = Base D
18 eqid Base C = Base C
19 eqid comp E = comp E
20 11 12 1 2 3 4 17 18 19 13 xpcfucco3 φ U V F G K L · ˙ M N R S = p Base D U p 1 st F p 1 st K p comp E 1 st M p R p p Base C V p 1 st G p 1 st L p ˙ 1 st N p S p
21 16 20 eqtrd φ B X Y · ˙ Z A = p Base D U p 1 st F p 1 st K p comp E 1 st M p R p p Base C V p 1 st G p 1 st L p ˙ 1 st N p S p
22 21 fveq2d φ X P Z B X Y · ˙ Z A = X P Z p Base D U p 1 st F p 1 st K p comp E 1 st M p R p p Base C V p 1 st G p 1 st L p ˙ 1 st N p S p
23 df-ov p Base D U p 1 st F p 1 st K p comp E 1 st M p R p X P Z p Base C V p 1 st G p 1 st L p ˙ 1 st N p S p = X P Z p Base D U p 1 st F p 1 st K p comp E 1 st M p R p p Base C V p 1 st G p 1 st L p ˙ 1 st N p S p
24 22 23 eqtr4di φ X P Z B X Y · ˙ Z A = p Base D U p 1 st F p 1 st K p comp E 1 st M p R p X P Z p Base C V p 1 st G p 1 st L p ˙ 1 st N p S p
25 11 12 1 2 3 4 xpcfuccocl φ U V F G K L · ˙ M N R S F D Nat E M × G C Nat D N
26 20 25 eqeltrrd φ p Base D U p 1 st F p 1 st K p comp E 1 st M p R p p Base C V p 1 st G p 1 st L p ˙ 1 st N p S p F D Nat E M × G C Nat D N
27 opelxp2 p Base D U p 1 st F p 1 st K p comp E 1 st M p R p p Base C V p 1 st G p 1 st L p ˙ 1 st N p S p F D Nat E M × G C Nat D N p Base C V p 1 st G p 1 st L p ˙ 1 st N p S p G C Nat D N
28 26 27 syl φ p Base C V p 1 st G p 1 st L p ˙ 1 st N p S p G C Nat D N
29 opelxp1 p Base D U p 1 st F p 1 st K p comp E 1 st M p R p p Base C V p 1 st G p 1 st L p ˙ 1 st N p S p F D Nat E M × G C Nat D N p Base D U p 1 st F p 1 st K p comp E 1 st M p R p F D Nat E M
30 26 29 syl φ p Base D U p 1 st F p 1 st K p comp E 1 st M p R p F D Nat E M
31 5 6 8 28 30 fuco22a φ p Base D U p 1 st F p 1 st K p comp E 1 st M p R p X P Z p Base C V p 1 st G p 1 st L p ˙ 1 st N p S p = x Base C p Base D U p 1 st F p 1 st K p comp E 1 st M p R p 1 st N x 1 st F 1 st G x 1 st F 1 st N x comp E 1 st M 1 st N x 1 st G x 2 nd F 1 st N x p Base C V p 1 st G p 1 st L p ˙ 1 st N p S p x
32 eqid C Nat D = C Nat D
33 32 natrcl V L C Nat D N L C Func D N C Func D
34 4 33 syl φ L C Func D N C Func D
35 34 simprd φ N C Func D
36 35 func1st2nd φ 1 st N C Func D 2 nd N
37 18 17 36 funcf1 φ 1 st N : Base C Base D
38 37 ffvelcdmda φ x Base C 1 st N x Base D
39 fveq2 p = 1 st N x 1 st F p = 1 st F 1 st N x
40 fveq2 p = 1 st N x 1 st K p = 1 st K 1 st N x
41 39 40 opeq12d p = 1 st N x 1 st F p 1 st K p = 1 st F 1 st N x 1 st K 1 st N x
42 fveq2 p = 1 st N x 1 st M p = 1 st M 1 st N x
43 41 42 oveq12d p = 1 st N x 1 st F p 1 st K p comp E 1 st M p = 1 st F 1 st N x 1 st K 1 st N x comp E 1 st M 1 st N x
44 fveq2 p = 1 st N x U p = U 1 st N x
45 fveq2 p = 1 st N x R p = R 1 st N x
46 43 44 45 oveq123d p = 1 st N x U p 1 st F p 1 st K p comp E 1 st M p R p = U 1 st N x 1 st F 1 st N x 1 st K 1 st N x comp E 1 st M 1 st N x R 1 st N x
47 eqid p Base D U p 1 st F p 1 st K p comp E 1 st M p R p = p Base D U p 1 st F p 1 st K p comp E 1 st M p R p
48 ovex U p 1 st F p 1 st K p comp E 1 st M p R p V
49 46 47 48 fvmpt3i 1 st N x Base D p Base D U p 1 st F p 1 st K p comp E 1 st M p R p 1 st N x = U 1 st N x 1 st F 1 st N x 1 st K 1 st N x comp E 1 st M 1 st N x R 1 st N x
50 38 49 syl φ x Base C p Base D U p 1 st F p 1 st K p comp E 1 st M p R p 1 st N x = U 1 st N x 1 st F 1 st N x 1 st K 1 st N x comp E 1 st M 1 st N x R 1 st N x
51 fveq2 p = x 1 st G p = 1 st G x
52 fveq2 p = x 1 st L p = 1 st L x
53 51 52 opeq12d p = x 1 st G p 1 st L p = 1 st G x 1 st L x
54 fveq2 p = x 1 st N p = 1 st N x
55 53 54 oveq12d p = x 1 st G p 1 st L p ˙ 1 st N p = 1 st G x 1 st L x ˙ 1 st N x
56 fveq2 p = x V p = V x
57 fveq2 p = x S p = S x
58 55 56 57 oveq123d p = x V p 1 st G p 1 st L p ˙ 1 st N p S p = V x 1 st G x 1 st L x ˙ 1 st N x S x
59 eqid p Base C V p 1 st G p 1 st L p ˙ 1 st N p S p = p Base C V p 1 st G p 1 st L p ˙ 1 st N p S p
60 ovex V p 1 st G p 1 st L p ˙ 1 st N p S p V
61 58 59 60 fvmpt3i x Base C p Base C V p 1 st G p 1 st L p ˙ 1 st N p S p x = V x 1 st G x 1 st L x ˙ 1 st N x S x
62 61 fveq2d x Base C 1 st G x 2 nd F 1 st N x p Base C V p 1 st G p 1 st L p ˙ 1 st N p S p x = 1 st G x 2 nd F 1 st N x V x 1 st G x 1 st L x ˙ 1 st N x S x
63 62 adantl φ x Base C 1 st G x 2 nd F 1 st N x p Base C V p 1 st G p 1 st L p ˙ 1 st N p S p x = 1 st G x 2 nd F 1 st N x V x 1 st G x 1 st L x ˙ 1 st N x S x
64 50 63 oveq12d φ x Base C p Base D U p 1 st F p 1 st K p comp E 1 st M p R p 1 st N x 1 st F 1 st G x 1 st F 1 st N x comp E 1 st M 1 st N x 1 st G x 2 nd F 1 st N x p Base C V p 1 st G p 1 st L p ˙ 1 st N p S p x = U 1 st N x 1 st F 1 st N x 1 st K 1 st N x comp E 1 st M 1 st N x R 1 st N x 1 st F 1 st G x 1 st F 1 st N x comp E 1 st M 1 st N x 1 st G x 2 nd F 1 st N x V x 1 st G x 1 st L x ˙ 1 st N x S x
65 64 mpteq2dva φ x Base C p Base D U p 1 st F p 1 st K p comp E 1 st M p R p 1 st N x 1 st F 1 st G x 1 st F 1 st N x comp E 1 st M 1 st N x 1 st G x 2 nd F 1 st N x p Base C V p 1 st G p 1 st L p ˙ 1 st N p S p x = x Base C U 1 st N x 1 st F 1 st N x 1 st K 1 st N x comp E 1 st M 1 st N x R 1 st N x 1 st F 1 st G x 1 st F 1 st N x comp E 1 st M 1 st N x 1 st G x 2 nd F 1 st N x V x 1 st G x 1 st L x ˙ 1 st N x S x
66 24 31 65 3eqtrd φ X P Z B X Y · ˙ Z A = x Base C U 1 st N x 1 st F 1 st N x 1 st K 1 st N x comp E 1 st M 1 st N x R 1 st N x 1 st F 1 st G x 1 st F 1 st N x comp E 1 st M 1 st N x 1 st G x 2 nd F 1 st N x V x 1 st G x 1 st L x ˙ 1 st N x S x