| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fullthinc.b |  | 
						
							| 2 |  | fullthinc.j |  | 
						
							| 3 |  | fullthinc.h |  | 
						
							| 4 |  | fullthinc.d |  | 
						
							| 5 |  | fullthinc.f |  | 
						
							| 6 | 1 2 3 | isfull2 |  | 
						
							| 7 |  | foeq2 |  | 
						
							| 8 |  | fo00 |  | 
						
							| 9 | 8 | simprbi |  | 
						
							| 10 | 7 9 | biimtrdi |  | 
						
							| 11 | 10 | com12 |  | 
						
							| 12 | 11 | 2ralimi |  | 
						
							| 13 | 6 12 | simplbiim |  | 
						
							| 14 | 13 | adantl |  | 
						
							| 15 |  | simplr |  | 
						
							| 16 |  | imor |  | 
						
							| 17 |  | simplr |  | 
						
							| 18 |  | simprl |  | 
						
							| 19 |  | simprr |  | 
						
							| 20 | 1 3 2 17 18 19 | funcf2 |  | 
						
							| 21 | 20 | adantr |  | 
						
							| 22 |  | simpr |  | 
						
							| 23 | 22 | neqned |  | 
						
							| 24 |  | fdomne0 |  | 
						
							| 25 | 21 23 24 | syl2anc |  | 
						
							| 26 | 25 | simprd |  | 
						
							| 27 |  | simplll |  | 
						
							| 28 |  | eqid |  | 
						
							| 29 | 17 | adantr |  | 
						
							| 30 | 1 28 29 | funcf1 |  | 
						
							| 31 | 18 | adantr |  | 
						
							| 32 | 30 31 | ffvelcdmd |  | 
						
							| 33 | 19 | adantr |  | 
						
							| 34 | 30 33 | ffvelcdmd |  | 
						
							| 35 |  | eqidd |  | 
						
							| 36 | 2 | a1i |  | 
						
							| 37 | 27 32 34 35 36 | thincn0eu |  | 
						
							| 38 | 26 37 | mpbid |  | 
						
							| 39 |  | eusn |  | 
						
							| 40 | 38 39 | sylib |  | 
						
							| 41 | 25 | simpld |  | 
						
							| 42 |  | foconst |  | 
						
							| 43 |  | feq3 |  | 
						
							| 44 | 43 | anbi1d |  | 
						
							| 45 |  | foeq3 |  | 
						
							| 46 | 44 45 | imbi12d |  | 
						
							| 47 | 42 46 | mpbiri |  | 
						
							| 48 | 47 | exlimiv |  | 
						
							| 49 | 48 | imp |  | 
						
							| 50 | 40 21 41 49 | syl12anc |  | 
						
							| 51 | 20 | adantr |  | 
						
							| 52 |  | feq3 |  | 
						
							| 53 | 52 | adantl |  | 
						
							| 54 | 51 53 | mpbid |  | 
						
							| 55 |  | f00 |  | 
						
							| 56 | 54 55 | sylib |  | 
						
							| 57 | 56 | simprd |  | 
						
							| 58 | 56 | simpld |  | 
						
							| 59 |  | simpr |  | 
						
							| 60 | 8 | biimpri |  | 
						
							| 61 | 60 7 | imbitrrid |  | 
						
							| 62 | 61 | imp |  | 
						
							| 63 | 57 58 59 62 | syl12anc |  | 
						
							| 64 | 50 63 | jaodan |  | 
						
							| 65 | 16 64 | sylan2b |  | 
						
							| 66 | 65 | ex |  | 
						
							| 67 | 66 | ralimdvva |  | 
						
							| 68 | 67 | imp |  | 
						
							| 69 | 15 68 6 | sylanbrc |  | 
						
							| 70 | 14 69 | impbida |  | 
						
							| 71 | 4 5 70 | syl2anc |  |