Metamath Proof Explorer


Theorem funcres2

Description: A functor into a restricted category is also a functor into the whole category. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Assertion funcres2 RSubcatDCFuncDcatRCFuncD

Proof

Step Hyp Ref Expression
1 relfunc RelCFuncDcatR
2 1 a1i RSubcatDRelCFuncDcatR
3 simpr RSubcatDfCFuncDcatRgfCFuncDcatRg
4 eqid BaseC=BaseC
5 eqid HomC=HomC
6 simpl RSubcatDfCFuncDcatRgRSubcatD
7 eqidd RSubcatDfCFuncDcatRgdomdomR=domdomR
8 6 7 subcfn RSubcatDfCFuncDcatRgRFndomdomR×domdomR
9 eqid BaseDcatR=BaseDcatR
10 4 9 3 funcf1 RSubcatDfCFuncDcatRgf:BaseCBaseDcatR
11 eqid DcatR=DcatR
12 eqid BaseD=BaseD
13 subcrcl RSubcatDDCat
14 13 adantr RSubcatDfCFuncDcatRgDCat
15 6 8 12 subcss1 RSubcatDfCFuncDcatRgdomdomRBaseD
16 11 12 14 8 15 rescbas RSubcatDfCFuncDcatRgdomdomR=BaseDcatR
17 16 feq3d RSubcatDfCFuncDcatRgf:BaseCdomdomRf:BaseCBaseDcatR
18 10 17 mpbird RSubcatDfCFuncDcatRgf:BaseCdomdomR
19 eqid HomDcatR=HomDcatR
20 simplr RSubcatDfCFuncDcatRgxBaseCyBaseCfCFuncDcatRg
21 simprl RSubcatDfCFuncDcatRgxBaseCyBaseCxBaseC
22 simprr RSubcatDfCFuncDcatRgxBaseCyBaseCyBaseC
23 4 5 19 20 21 22 funcf2 RSubcatDfCFuncDcatRgxBaseCyBaseCxgy:xHomCyfxHomDcatRfy
24 11 12 14 8 15 reschom RSubcatDfCFuncDcatRgR=HomDcatR
25 24 adantr RSubcatDfCFuncDcatRgxBaseCyBaseCR=HomDcatR
26 25 oveqd RSubcatDfCFuncDcatRgxBaseCyBaseCfxRfy=fxHomDcatRfy
27 26 feq3d RSubcatDfCFuncDcatRgxBaseCyBaseCxgy:xHomCyfxRfyxgy:xHomCyfxHomDcatRfy
28 23 27 mpbird RSubcatDfCFuncDcatRgxBaseCyBaseCxgy:xHomCyfxRfy
29 4 5 6 8 18 28 funcres2b RSubcatDfCFuncDcatRgfCFuncDgfCFuncDcatRg
30 3 29 mpbird RSubcatDfCFuncDcatRgfCFuncDg
31 30 ex RSubcatDfCFuncDcatRgfCFuncDg
32 df-br fCFuncDcatRgfgCFuncDcatR
33 df-br fCFuncDgfgCFuncD
34 31 32 33 3imtr3g RSubcatDfgCFuncDcatRfgCFuncD
35 2 34 relssdv RSubcatDCFuncDcatRCFuncD