Metamath Proof Explorer


Theorem funcsetcestrclem7

Description: Lemma 7 for funcsetcestrc . (Contributed by AV, 27-Mar-2020)

Ref Expression
Hypotheses funcsetcestrc.s S=SetCatU
funcsetcestrc.c C=BaseS
funcsetcestrc.f φF=xCBasendxx
funcsetcestrc.u φUWUni
funcsetcestrc.o φωU
funcsetcestrc.g φG=xC,yCIyx
funcsetcestrc.e E=ExtStrCatU
Assertion funcsetcestrclem7 φXCXGXIdSX=IdEFX

Proof

Step Hyp Ref Expression
1 funcsetcestrc.s S=SetCatU
2 funcsetcestrc.c C=BaseS
3 funcsetcestrc.f φF=xCBasendxx
4 funcsetcestrc.u φUWUni
5 funcsetcestrc.o φωU
6 funcsetcestrc.g φG=xC,yCIyx
7 funcsetcestrc.e E=ExtStrCatU
8 1 2 3 4 5 6 funcsetcestrclem5 φXCXCXGX=IXX
9 8 anabsan2 φXCXGX=IXX
10 eqid IdS=IdS
11 4 adantr φXCUWUni
12 1 4 setcbas φU=BaseS
13 2 12 eqtr4id φC=U
14 13 eleq2d φXCXU
15 14 biimpa φXCXU
16 1 10 11 15 setcid φXCIdSX=IX
17 9 16 fveq12d φXCXGXIdSX=IXXIX
18 f1oi IX:X1-1 ontoX
19 f1of IX:X1-1 ontoXIX:XX
20 18 19 ax-mp IX:XX
21 simpr φXCXC
22 21 21 elmapd φXCIXXXIX:XX
23 20 22 mpbiri φXCIXXX
24 fvresi IXXXIXXIX=IX
25 23 24 syl φXCIXXIX=IX
26 eqid BasendxX=BasendxX
27 26 1strbas XCX=BaseBasendxX
28 21 27 syl φXCX=BaseBasendxX
29 28 reseq2d φXCIX=IBaseBasendxX
30 25 29 eqtrd φXCIXXIX=IBaseBasendxX
31 1 2 3 funcsetcestrclem1 φXCFX=BasendxX
32 31 fveq2d φXCIdEFX=IdEBasendxX
33 eqid IdE=IdE
34 1 2 4 5 setc1strwun φXCBasendxXU
35 7 33 11 34 estrcid φXCIdEBasendxX=IBaseBasendxX
36 32 35 eqtr2d φXCIBaseBasendxX=IdEFX
37 17 30 36 3eqtrd φXCXGXIdSX=IdEFX