Metamath Proof Explorer


Theorem fvmptnn04ifb

Description: The function value of a mapping from the nonnegative integers with four distinct cases for the second case. (Contributed by AV, 10-Nov-2019)

Ref Expression
Hypotheses fvmptnn04if.g G=n0ifn=0Aifn=SCifS<nDB
fvmptnn04if.s φS
fvmptnn04if.n φN0
Assertion fvmptnn04ifb φ0<NN<SN/nBVGN=N/nB

Proof

Step Hyp Ref Expression
1 fvmptnn04if.g G=n0ifn=0Aifn=SCifS<nDB
2 fvmptnn04if.s φS
3 fvmptnn04if.n φN0
4 2 3ad2ant1 φ0<NN<SN/nBVS
5 3 3ad2ant1 φ0<NN<SN/nBVN0
6 simp3 φ0<NN<SN/nBVN/nBV
7 nn0re N0N
8 nn0ge0 N00N
9 7 8 jca N0N0N
10 ne0gt0 N0NN00<N
11 3 9 10 3syl φN00<N
12 11 biimprcd 0<NφN0
13 12 adantr 0<NN<SφN0
14 13 impcom φ0<NN<SN0
15 14 3adant3 φ0<NN<SN/nBVN0
16 neneq N0¬N=0
17 16 pm2.21d N0N=0N/nB=N/nA
18 15 17 syl φ0<NN<SN/nBVN=0N/nB=N/nA
19 18 imp φ0<NN<SN/nBVN=0N/nB=N/nA
20 eqidd φ0<NN<SN/nBV0<NN<SN/nB=N/nB
21 3 7 syl φN
22 21 adantr φN<SN
23 simpr φN<SN<S
24 22 23 ltned φN<SNS
25 24 neneqd φN<S¬N=S
26 25 adantrl φ0<NN<S¬N=S
27 26 3adant3 φ0<NN<SN/nBV¬N=S
28 27 pm2.21d φ0<NN<SN/nBVN=SN/nB=N/nC
29 28 imp φ0<NN<SN/nBVN=SN/nB=N/nC
30 2 nnred φS
31 ltnsym NSN<S¬S<N
32 21 30 31 syl2anc φN<S¬S<N
33 32 com12 N<Sφ¬S<N
34 33 adantl 0<NN<Sφ¬S<N
35 34 impcom φ0<NN<S¬S<N
36 35 3adant3 φ0<NN<SN/nBV¬S<N
37 36 pm2.21d φ0<NN<SN/nBVS<NN/nB=N/nD
38 37 imp φ0<NN<SN/nBVS<NN/nB=N/nD
39 1 4 5 6 19 20 29 38 fvmptnn04if φ0<NN<SN/nBVGN=N/nB