Metamath Proof Explorer


Theorem fvray

Description: Calculate the value of the Ray function. (Contributed by Scott Fenton, 21-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion fvray NP𝔼NA𝔼NPAPRayA=x𝔼N|POutsideOfAx

Proof

Step Hyp Ref Expression
1 df-ov PRayA=RayPA
2 eqid x𝔼N|POutsideOfAx=x𝔼N|POutsideOfAx
3 fveq2 n=N𝔼n=𝔼N
4 3 eleq2d n=NP𝔼nP𝔼N
5 3 eleq2d n=NA𝔼nA𝔼N
6 4 5 3anbi12d n=NP𝔼nA𝔼nPAP𝔼NA𝔼NPA
7 rabeq 𝔼n=𝔼Nx𝔼n|POutsideOfAx=x𝔼N|POutsideOfAx
8 3 7 syl n=Nx𝔼n|POutsideOfAx=x𝔼N|POutsideOfAx
9 8 eqeq2d n=Nx𝔼N|POutsideOfAx=x𝔼n|POutsideOfAxx𝔼N|POutsideOfAx=x𝔼N|POutsideOfAx
10 6 9 anbi12d n=NP𝔼nA𝔼nPAx𝔼N|POutsideOfAx=x𝔼n|POutsideOfAxP𝔼NA𝔼NPAx𝔼N|POutsideOfAx=x𝔼N|POutsideOfAx
11 10 rspcev NP𝔼NA𝔼NPAx𝔼N|POutsideOfAx=x𝔼N|POutsideOfAxnP𝔼nA𝔼nPAx𝔼N|POutsideOfAx=x𝔼n|POutsideOfAx
12 2 11 mpanr2 NP𝔼NA𝔼NPAnP𝔼nA𝔼nPAx𝔼N|POutsideOfAx=x𝔼n|POutsideOfAx
13 simpr1 NP𝔼NA𝔼NPAP𝔼N
14 simpr2 NP𝔼NA𝔼NPAA𝔼N
15 fvex 𝔼NV
16 15 rabex x𝔼N|POutsideOfAxV
17 eleq1 p=Pp𝔼nP𝔼n
18 neeq1 p=PpaPa
19 17 18 3anbi13d p=Pp𝔼na𝔼npaP𝔼na𝔼nPa
20 breq1 p=PpOutsideOfaxPOutsideOfax
21 20 rabbidv p=Px𝔼n|pOutsideOfax=x𝔼n|POutsideOfax
22 21 eqeq2d p=Pr=x𝔼n|pOutsideOfaxr=x𝔼n|POutsideOfax
23 19 22 anbi12d p=Pp𝔼na𝔼npar=x𝔼n|pOutsideOfaxP𝔼na𝔼nPar=x𝔼n|POutsideOfax
24 23 rexbidv p=Pnp𝔼na𝔼npar=x𝔼n|pOutsideOfaxnP𝔼na𝔼nPar=x𝔼n|POutsideOfax
25 eleq1 a=Aa𝔼nA𝔼n
26 neeq2 a=APaPA
27 25 26 3anbi23d a=AP𝔼na𝔼nPaP𝔼nA𝔼nPA
28 opeq1 a=Aax=Ax
29 28 breq2d a=APOutsideOfaxPOutsideOfAx
30 29 rabbidv a=Ax𝔼n|POutsideOfax=x𝔼n|POutsideOfAx
31 30 eqeq2d a=Ar=x𝔼n|POutsideOfaxr=x𝔼n|POutsideOfAx
32 27 31 anbi12d a=AP𝔼na𝔼nPar=x𝔼n|POutsideOfaxP𝔼nA𝔼nPAr=x𝔼n|POutsideOfAx
33 32 rexbidv a=AnP𝔼na𝔼nPar=x𝔼n|POutsideOfaxnP𝔼nA𝔼nPAr=x𝔼n|POutsideOfAx
34 eqeq1 r=x𝔼N|POutsideOfAxr=x𝔼n|POutsideOfAxx𝔼N|POutsideOfAx=x𝔼n|POutsideOfAx
35 34 anbi2d r=x𝔼N|POutsideOfAxP𝔼nA𝔼nPAr=x𝔼n|POutsideOfAxP𝔼nA𝔼nPAx𝔼N|POutsideOfAx=x𝔼n|POutsideOfAx
36 35 rexbidv r=x𝔼N|POutsideOfAxnP𝔼nA𝔼nPAr=x𝔼n|POutsideOfAxnP𝔼nA𝔼nPAx𝔼N|POutsideOfAx=x𝔼n|POutsideOfAx
37 24 33 36 eloprabg P𝔼NA𝔼Nx𝔼N|POutsideOfAxVPAx𝔼N|POutsideOfAxpar|np𝔼na𝔼npar=x𝔼n|pOutsideOfaxnP𝔼nA𝔼nPAx𝔼N|POutsideOfAx=x𝔼n|POutsideOfAx
38 16 37 mp3an3 P𝔼NA𝔼NPAx𝔼N|POutsideOfAxpar|np𝔼na𝔼npar=x𝔼n|pOutsideOfaxnP𝔼nA𝔼nPAx𝔼N|POutsideOfAx=x𝔼n|POutsideOfAx
39 13 14 38 syl2anc NP𝔼NA𝔼NPAPAx𝔼N|POutsideOfAxpar|np𝔼na𝔼npar=x𝔼n|pOutsideOfaxnP𝔼nA𝔼nPAx𝔼N|POutsideOfAx=x𝔼n|POutsideOfAx
40 12 39 mpbird NP𝔼NA𝔼NPAPAx𝔼N|POutsideOfAxpar|np𝔼na𝔼npar=x𝔼n|pOutsideOfax
41 df-br PARayx𝔼N|POutsideOfAxPAx𝔼N|POutsideOfAxRay
42 df-ray Ray=par|np𝔼na𝔼npar=x𝔼n|pOutsideOfax
43 42 eleq2i PAx𝔼N|POutsideOfAxRayPAx𝔼N|POutsideOfAxpar|np𝔼na𝔼npar=x𝔼n|pOutsideOfax
44 41 43 bitri PARayx𝔼N|POutsideOfAxPAx𝔼N|POutsideOfAxpar|np𝔼na𝔼npar=x𝔼n|pOutsideOfax
45 funray FunRay
46 funbrfv FunRayPARayx𝔼N|POutsideOfAxRayPA=x𝔼N|POutsideOfAx
47 45 46 ax-mp PARayx𝔼N|POutsideOfAxRayPA=x𝔼N|POutsideOfAx
48 44 47 sylbir PAx𝔼N|POutsideOfAxpar|np𝔼na𝔼npar=x𝔼n|pOutsideOfaxRayPA=x𝔼N|POutsideOfAx
49 40 48 syl NP𝔼NA𝔼NPARayPA=x𝔼N|POutsideOfAx
50 1 49 eqtrid NP𝔼NA𝔼NPAPRayA=x𝔼N|POutsideOfAx