Metamath Proof Explorer


Theorem fvun1

Description: The value of a union when the argument is in the first domain. (Contributed by Scott Fenton, 29-Jun-2013)

Ref Expression
Assertion fvun1 FFnAGFnBAB=XAFGX=FX

Proof

Step Hyp Ref Expression
1 fnfun FFnAFunF
2 1 3ad2ant1 FFnAGFnBAB=XAFunF
3 fnfun GFnBFunG
4 3 3ad2ant2 FFnAGFnBAB=XAFunG
5 fndm FFnAdomF=A
6 fndm GFnBdomG=B
7 5 6 ineqan12d FFnAGFnBdomFdomG=AB
8 7 eqeq1d FFnAGFnBdomFdomG=AB=
9 8 biimprd FFnAGFnBAB=domFdomG=
10 9 adantrd FFnAGFnBAB=XAdomFdomG=
11 10 3impia FFnAGFnBAB=XAdomFdomG=
12 fvun FunFFunGdomFdomG=FGX=FXGX
13 2 4 11 12 syl21anc FFnAGFnBAB=XAFGX=FXGX
14 disjel AB=XA¬XB
15 14 adantl GFnBAB=XA¬XB
16 6 eleq2d GFnBXdomGXB
17 16 adantr GFnBAB=XAXdomGXB
18 15 17 mtbird GFnBAB=XA¬XdomG
19 18 3adant1 FFnAGFnBAB=XA¬XdomG
20 ndmfv ¬XdomGGX=
21 19 20 syl FFnAGFnBAB=XAGX=
22 21 uneq2d FFnAGFnBAB=XAFXGX=FX
23 un0 FX=FX
24 22 23 eqtrdi FFnAGFnBAB=XAFXGX=FX
25 13 24 eqtrd FFnAGFnBAB=XAFGX=FX