Metamath Proof Explorer


Theorem fzuntgd

Description: Union of two adjacent or overlapping finite sets of sequential integers. (Contributed by RP, 14-Dec-2024)

Ref Expression
Hypotheses fzuntgd.k φK
fzuntgd.l φL
fzuntgd.m φM
fzuntgd.n φN
fzuntgd.km φKM
fzuntgd.ml φML+1
fzuntgd.ln φLN
Assertion fzuntgd φKLMN=KN

Proof

Step Hyp Ref Expression
1 fzuntgd.k φK
2 fzuntgd.l φL
3 fzuntgd.m φM
4 fzuntgd.n φN
5 fzuntgd.km φKM
6 fzuntgd.ml φML+1
7 fzuntgd.ln φLN
8 zre jj
9 simplr φjjLj
10 2 zred φL
11 10 ad2antrr φjjLL
12 4 zred φN
13 12 ad2antrr φjjLN
14 simpr φjjLjL
15 7 ad2antrr φjjLLN
16 9 11 13 14 15 letrd φjjLjN
17 16 ex φjjLjN
18 17 anim2d φjKjjLKjjN
19 1 zred φK
20 19 ad2antrr φjMjK
21 3 zred φM
22 21 ad2antrr φjMjM
23 simplr φjMjj
24 5 ad2antrr φjMjKM
25 simpr φjMjMj
26 20 22 23 24 25 letrd φjMjKj
27 26 ex φjMjKj
28 27 anim1d φjMjjNKjjN
29 18 28 jaod φjKjjLMjjNKjjN
30 8 29 sylan2 φjKjjLMjjNKjjN
31 orc KjKjMj
32 orc KjKjjN
33 31 32 jca KjKjMjKjjN
34 33 ad2antrl φjKjjNKjMjKjjN
35 animorrl φjjLjLMj
36 21 ad2antrr φjL+1jM
37 peano2re LL+1
38 10 37 syl φL+1
39 38 ad2antrr φjL+1jL+1
40 simplr φjL+1jj
41 40 zred φjL+1jj
42 6 ad2antrr φjL+1jML+1
43 simpr φjL+1jL+1j
44 36 39 41 42 43 letrd φjL+1jMj
45 44 olcd φjL+1jjLMj
46 simpr φjj
47 46 zred φjj
48 2 adantr φjL
49 48 zred φjL
50 lelttric jLjLL<j
51 47 49 50 syl2anc φjjLL<j
52 zltp1le LjL<jL+1j
53 2 52 sylan φjL<jL+1j
54 53 orbi2d φjjLL<jjLL+1j
55 51 54 mpbid φjjLL+1j
56 35 45 55 mpjaodan φjjLMj
57 56 adantr φjKjjNjLMj
58 simprr φjKjjNjN
59 58 olcd φjKjjNjLjN
60 57 59 jca φjKjjNjLMjjLjN
61 orddi KjjLMjjNKjMjKjjNjLMjjLjN
62 34 60 61 sylanbrc φjKjjNKjjLMjjN
63 62 ex φjKjjNKjjLMjjN
64 30 63 impbid φjKjjLMjjNKjjN
65 64 pm5.32da φjKjjLMjjNjKjjN
66 elfz1 KLjKLjKjjL
67 1 2 66 syl2anc φjKLjKjjL
68 3anass jKjjLjKjjL
69 67 68 bitrdi φjKLjKjjL
70 elfz1 MNjMNjMjjN
71 3 4 70 syl2anc φjMNjMjjN
72 3anass jMjjNjMjjN
73 71 72 bitrdi φjMNjMjjN
74 69 73 orbi12d φjKLjMNjKjjLjMjjN
75 elun jKLMNjKLjMN
76 andi jKjjLMjjNjKjjLjMjjN
77 74 75 76 3bitr4g φjKLMNjKjjLMjjN
78 elfz1 KNjKNjKjjN
79 1 4 78 syl2anc φjKNjKjjN
80 3anass jKjjNjKjjN
81 79 80 bitrdi φjKNjKjjN
82 65 77 81 3bitr4d φjKLMNjKN
83 82 eqrdv φKLMN=KN