Metamath Proof Explorer


Theorem gausslemma2dlem0c

Description: Auxiliary lemma 3 for gausslemma2d . (Contributed by AV, 13-Jul-2021)

Ref Expression
Hypotheses gausslemma2dlem0a.p φP2
gausslemma2dlem0b.h H=P12
Assertion gausslemma2dlem0c φH!gcdP=1

Proof

Step Hyp Ref Expression
1 gausslemma2dlem0a.p φP2
2 gausslemma2dlem0b.h H=P12
3 eldifi P2P
4 1 3 syl φP
5 1 2 gausslemma2dlem0b φH
6 5 nnnn0d φH0
7 4 6 jca φPH0
8 prmnn PP
9 nnre PP
10 peano2rem PP1
11 9 10 syl PP1
12 2re 2
13 12 a1i P2
14 13 9 remulcld P2P
15 9 ltm1d PP1<P
16 nnnn0 PP0
17 16 nn0ge0d P0P
18 1le2 12
19 18 a1i P12
20 9 13 17 19 lemulge12d PP2P
21 11 9 14 15 20 ltletrd PP1<2P
22 2pos 0<2
23 12 22 pm3.2i 20<2
24 23 a1i P20<2
25 ltdivmul P1P20<2P12<PP1<2P
26 11 9 24 25 syl3anc PP12<PP1<2P
27 21 26 mpbird PP12<P
28 3 8 27 3syl P2P12<P
29 1 28 syl φP12<P
30 2 29 eqbrtrid φH<P
31 prmndvdsfaclt PH0H<P¬PH!
32 7 30 31 sylc φ¬PH!
33 6 faccld φH!
34 33 nnzd φH!
35 nnz PP
36 3 8 35 3syl P2P
37 1 36 syl φP
38 34 37 gcdcomd φH!gcdP=PgcdH!
39 38 eqeq1d φH!gcdP=1PgcdH!=1
40 coprm PH!¬PH!PgcdH!=1
41 4 34 40 syl2anc φ¬PH!PgcdH!=1
42 39 41 bitr4d φH!gcdP=1¬PH!
43 32 42 mpbird φH!gcdP=1