Metamath Proof Explorer


Theorem gausslemma2dlem7

Description: Lemma 7 for gausslemma2d . (Contributed by AV, 13-Jul-2021)

Ref Expression
Hypotheses gausslemma2d.p φP2
gausslemma2d.h H=P12
gausslemma2d.r R=x1Hifx2<P2x2Px2
gausslemma2d.m M=P4
gausslemma2d.n N=HM
Assertion gausslemma2dlem7 φ1N2HmodP=1

Proof

Step Hyp Ref Expression
1 gausslemma2d.p φP2
2 gausslemma2d.h H=P12
3 gausslemma2d.r R=x1Hifx2<P2x2Px2
4 gausslemma2d.m M=P4
5 gausslemma2d.n N=HM
6 1 2 3 4 5 gausslemma2dlem6 φH!modP=1N2HH!modP
7 1 2 gausslemma2dlem0b φH
8 7 nnnn0d φH0
9 8 faccld φH!
10 9 nncnd φH!
11 10 mullidd φ1H!=H!
12 11 eqcomd φH!=1H!
13 12 oveq1d φH!modP=1H!modP
14 13 eqeq1d φH!modP=1N2HH!modP1H!modP=1N2HH!modP
15 1zzd φ1
16 neg1z 1
17 1 4 2 5 gausslemma2dlem0h φN0
18 zexpcl 1N01N
19 16 17 18 sylancr φ1N
20 2z 2
21 zexpcl 2H02H
22 20 8 21 sylancr φ2H
23 19 22 zmulcld φ1N2H
24 9 nnzd φH!
25 eldifi P2P
26 prmnn PP
27 1 25 26 3syl φP
28 1 2 gausslemma2dlem0c φH!gcdP=1
29 cncongrcoprm 11N2HH!PH!gcdP=11H!modP=1N2HH!modP1modP=1N2HmodP
30 15 23 24 27 28 29 syl32anc φ1H!modP=1N2HH!modP1modP=1N2HmodP
31 14 30 bitrd φH!modP=1N2HH!modP1modP=1N2HmodP
32 simpr φ1modP=1N2HmodP1modP=1N2HmodP
33 26 nnred PP
34 prmgt1 P1<P
35 33 34 jca PP1<P
36 25 35 syl P2P1<P
37 1mod P1<P1modP=1
38 1 36 37 3syl φ1modP=1
39 38 adantr φ1modP=1N2HmodP1modP=1
40 32 39 eqtr3d φ1modP=1N2HmodP1N2HmodP=1
41 40 ex φ1modP=1N2HmodP1N2HmodP=1
42 31 41 sylbid φH!modP=1N2HH!modP1N2HmodP=1
43 6 42 mpd φ1N2HmodP=1