Metamath Proof Explorer


Theorem gcdaddmlem

Description: Lemma for gcdaddm . (Contributed by Paul Chapman, 31-Mar-2011)

Ref Expression
Hypotheses gcdaddmlem.1 K
gcdaddmlem.2 M
gcdaddmlem.3 N
Assertion gcdaddmlem MgcdN=MgcdK M+N

Proof

Step Hyp Ref Expression
1 gcdaddmlem.1 K
2 gcdaddmlem.2 M
3 gcdaddmlem.3 N
4 gcddvds MNMgcdNMMgcdNN
5 2 3 4 mp2an MgcdNMMgcdNN
6 5 simpli MgcdNM
7 gcdcl MNMgcdN0
8 2 3 7 mp2an MgcdN0
9 8 nn0zi MgcdN
10 1z 1
11 dvds2ln K1MgcdNMNMgcdNMMgcdNNMgcdNK M+1 N
12 1 10 11 mpanl12 MgcdNMNMgcdNMMgcdNNMgcdNK M+1 N
13 9 2 3 12 mp3an MgcdNMMgcdNNMgcdNK M+1 N
14 5 13 ax-mp MgcdNK M+1 N
15 zcn NN
16 3 15 ax-mp N
17 16 mullidi 1 N=N
18 17 oveq2i K M+1 N=K M+N
19 14 18 breqtri MgcdNK M+N
20 zmulcl KMK M
21 1 2 20 mp2an K M
22 zaddcl K MNK M+N
23 21 3 22 mp2an K M+N
24 dvdslegcd MgcdNMK M+N¬M=0K M+N=0MgcdNMMgcdNK M+NMgcdNMgcdK M+N
25 24 ex MgcdNMK M+N¬M=0K M+N=0MgcdNMMgcdNK M+NMgcdNMgcdK M+N
26 9 2 23 25 mp3an ¬M=0K M+N=0MgcdNMMgcdNK M+NMgcdNMgcdK M+N
27 6 19 26 mp2ani ¬M=0K M+N=0MgcdNMgcdK M+N
28 gcddvds MK M+NMgcdK M+NMMgcdK M+NK M+N
29 2 23 28 mp2an MgcdK M+NMMgcdK M+NK M+N
30 29 simpli MgcdK M+NM
31 gcdcl MK M+NMgcdK M+N0
32 2 23 31 mp2an MgcdK M+N0
33 32 nn0zi MgcdK M+N
34 znegcl KK
35 1 34 ax-mp K
36 dvds2ln K1MgcdK M+NMK M+NMgcdK M+NMMgcdK M+NK M+NMgcdK M+NK M+1K M+N
37 35 10 36 mpanl12 MgcdK M+NMK M+NMgcdK M+NMMgcdK M+NK M+NMgcdK M+NK M+1K M+N
38 33 2 23 37 mp3an MgcdK M+NMMgcdK M+NK M+NMgcdK M+NK M+1K M+N
39 29 38 ax-mp MgcdK M+NK M+1K M+N
40 zcn KK
41 1 40 ax-mp K
42 zcn MM
43 2 42 ax-mp M
44 41 43 mulneg1i K M=K M
45 zcn K M+NK M+N
46 23 45 ax-mp K M+N
47 46 mullidi 1K M+N=K M+N
48 44 47 oveq12i K M+1K M+N=K M+K M+N
49 41 43 mulcli K M
50 49 negcli K M
51 49 negidi K M+K M=0
52 49 50 51 addcomli -K M+K M=0
53 52 oveq1i K M+K M+N=0+N
54 50 49 16 addassi K M+K M+N=K M+K M+N
55 16 addlidi 0+N=N
56 53 54 55 3eqtr3i K M+K M+N=N
57 48 56 eqtri K M+1K M+N=N
58 39 57 breqtri MgcdK M+NN
59 dvdslegcd MgcdK M+NMN¬M=0N=0MgcdK M+NMMgcdK M+NNMgcdK M+NMgcdN
60 59 ex MgcdK M+NMN¬M=0N=0MgcdK M+NMMgcdK M+NNMgcdK M+NMgcdN
61 33 2 3 60 mp3an ¬M=0N=0MgcdK M+NMMgcdK M+NNMgcdK M+NMgcdN
62 30 58 61 mp2ani ¬M=0N=0MgcdK M+NMgcdN
63 27 62 anim12i ¬M=0K M+N=0¬M=0N=0MgcdNMgcdK M+NMgcdK M+NMgcdN
64 9 zrei MgcdN
65 33 zrei MgcdK M+N
66 64 65 letri3i MgcdN=MgcdK M+NMgcdNMgcdK M+NMgcdK M+NMgcdN
67 63 66 sylibr ¬M=0K M+N=0¬M=0N=0MgcdN=MgcdK M+N
68 pm4.57 ¬¬M=0K M+N=0¬M=0N=0M=0K M+N=0M=0N=0
69 oveq2 M=0K M=K0
70 41 mul01i K0=0
71 69 70 eqtrdi M=0K M=0
72 71 oveq1d M=0K M+N=0+N
73 72 55 eqtrdi M=0K M+N=N
74 73 eqeq1d M=0K M+N=0N=0
75 74 pm5.32i M=0K M+N=0M=0N=0
76 oveq12 M=0N=0MgcdN=0gcd0
77 oveq12 M=0K M+N=0MgcdK M+N=0gcd0
78 75 77 sylbir M=0N=0MgcdK M+N=0gcd0
79 76 78 eqtr4d M=0N=0MgcdN=MgcdK M+N
80 75 79 sylbi M=0K M+N=0MgcdN=MgcdK M+N
81 80 79 jaoi M=0K M+N=0M=0N=0MgcdN=MgcdK M+N
82 68 81 sylbi ¬¬M=0K M+N=0¬M=0N=0MgcdN=MgcdK M+N
83 67 82 pm2.61i MgcdN=MgcdK M+N