| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl2 |  | 
						
							| 2 | 1 | pwexd |  | 
						
							| 3 |  | simpl3 |  | 
						
							| 4 |  | djudoml |  | 
						
							| 5 | 2 3 4 | syl2anc |  | 
						
							| 6 |  | domen2 |  | 
						
							| 7 | 5 6 | syl5ibrcom |  | 
						
							| 8 |  | djucomen |  | 
						
							| 9 | 3 2 8 | syl2anc |  | 
						
							| 10 |  | entr |  | 
						
							| 11 | 10 | ex |  | 
						
							| 12 | 9 11 | syl |  | 
						
							| 13 |  | ensym |  | 
						
							| 14 |  | endom |  | 
						
							| 15 | 13 14 | syl |  | 
						
							| 16 | 12 15 | syl6 |  | 
						
							| 17 |  | domsdomtr |  | 
						
							| 18 | 17 | 3ad2antl1 |  | 
						
							| 19 |  | sdomnsym |  | 
						
							| 20 | 18 19 | syl |  | 
						
							| 21 |  | isfinite |  | 
						
							| 22 | 20 21 | sylnibr |  | 
						
							| 23 |  | gchdjuidm |  | 
						
							| 24 | 3 22 23 | syl2anc |  | 
						
							| 25 |  | pwen |  | 
						
							| 26 |  | domen1 |  | 
						
							| 27 | 24 25 26 | 3syl |  | 
						
							| 28 |  | pwdjudom |  | 
						
							| 29 |  | canth2g |  | 
						
							| 30 |  | sdomdomtr |  | 
						
							| 31 | 30 | ex |  | 
						
							| 32 | 3 29 31 | 3syl |  | 
						
							| 33 |  | gchi |  | 
						
							| 34 | 33 | 3expia |  | 
						
							| 35 | 34 | 3ad2antl2 |  | 
						
							| 36 |  | isfinite |  | 
						
							| 37 |  | simpl1 |  | 
						
							| 38 |  | domnsym |  | 
						
							| 39 | 37 38 | syl |  | 
						
							| 40 | 39 | pm2.21d |  | 
						
							| 41 | 36 40 | biimtrid |  | 
						
							| 42 | 32 35 41 | 3syld |  | 
						
							| 43 | 28 42 | syl5 |  | 
						
							| 44 | 27 43 | sylbird |  | 
						
							| 45 | 16 44 | syld |  | 
						
							| 46 |  | djudoml |  | 
						
							| 47 | 3 2 46 | syl2anc |  | 
						
							| 48 |  | domentr |  | 
						
							| 49 | 47 9 48 | syl2anc |  | 
						
							| 50 |  | sdomdom |  | 
						
							| 51 | 50 | adantl |  | 
						
							| 52 |  | pwdom |  | 
						
							| 53 | 51 52 | syl |  | 
						
							| 54 |  | djudom1 |  | 
						
							| 55 | 53 3 54 | syl2anc |  | 
						
							| 56 |  | sdomdom |  | 
						
							| 57 | 3 29 56 | 3syl |  | 
						
							| 58 | 3 | pwexd |  | 
						
							| 59 |  | djudom2 |  | 
						
							| 60 | 57 58 59 | syl2anc |  | 
						
							| 61 |  | domtr |  | 
						
							| 62 | 55 60 61 | syl2anc |  | 
						
							| 63 |  | pwdju1 |  | 
						
							| 64 | 3 63 | syl |  | 
						
							| 65 |  | gchdju1 |  | 
						
							| 66 | 3 22 65 | syl2anc |  | 
						
							| 67 |  | pwen |  | 
						
							| 68 | 66 67 | syl |  | 
						
							| 69 |  | entr |  | 
						
							| 70 | 64 68 69 | syl2anc |  | 
						
							| 71 |  | domentr |  | 
						
							| 72 | 62 70 71 | syl2anc |  | 
						
							| 73 |  | gchor |  | 
						
							| 74 | 3 22 49 72 73 | syl22anc |  | 
						
							| 75 | 7 45 74 | mpjaod |  | 
						
							| 76 | 75 | ex |  | 
						
							| 77 |  | reldom |  | 
						
							| 78 | 77 | brrelex1i |  | 
						
							| 79 |  | pwexb |  | 
						
							| 80 |  | canth2g |  | 
						
							| 81 | 79 80 | sylbir |  | 
						
							| 82 | 78 81 | syl |  | 
						
							| 83 |  | sdomdomtr |  | 
						
							| 84 | 82 83 | mpancom |  | 
						
							| 85 | 76 84 | impbid1 |  |