Metamath Proof Explorer


Theorem georeclim

Description: The limit of a geometric series of reciprocals. (Contributed by Paul Chapman, 28-Dec-2007) (Revised by Mario Carneiro, 26-Apr-2014)

Ref Expression
Hypotheses georeclim.1 φA
georeclim.2 φ1<A
georeclim.3 φk0Fk=1Ak
Assertion georeclim φseq0+FAA1

Proof

Step Hyp Ref Expression
1 georeclim.1 φA
2 georeclim.2 φ1<A
3 georeclim.3 φk0Fk=1Ak
4 0le1 01
5 0re 0
6 1re 1
7 5 6 lenlti 01¬1<0
8 4 7 mpbi ¬1<0
9 fveq2 A=0A=0
10 abs0 0=0
11 9 10 eqtrdi A=0A=0
12 11 breq2d A=01<A1<0
13 8 12 mtbiri A=0¬1<A
14 13 necon2ai 1<AA0
15 2 14 syl φA0
16 1 15 reccld φ1A
17 1cnd φ1
18 17 1 15 absdivd φ1A=1A
19 abs1 1=1
20 19 oveq1i 1A=1A
21 18 20 eqtrdi φ1A=1A
22 1 15 absrpcld φA+
23 22 recgt1d φ1<A1A<1
24 2 23 mpbid φ1A<1
25 21 24 eqbrtrd φ1A<1
26 16 25 3 geolim φseq0+F111A
27 1 17 1 15 divsubdird φA1A=AA1A
28 1 15 dividd φAA=1
29 28 oveq1d φAA1A=11A
30 27 29 eqtrd φA1A=11A
31 30 oveq2d φ1A1A=111A
32 ax-1cn 1
33 subcl A1A1
34 1 32 33 sylancl φA1
35 6 ltnri ¬1<1
36 fveq2 A=1A=1
37 36 19 eqtrdi A=1A=1
38 37 breq2d A=11<A1<1
39 35 38 mtbiri A=1¬1<A
40 39 necon2ai 1<AA1
41 2 40 syl φA1
42 subeq0 A1A1=0A=1
43 1 32 42 sylancl φA1=0A=1
44 43 necon3bid φA10A1
45 41 44 mpbird φA10
46 34 1 45 15 recdivd φ1A1A=AA1
47 31 46 eqtr3d φ111A=AA1
48 26 47 breqtrd φseq0+FAA1