Metamath Proof Explorer


Theorem gex1

Description: A group or monoid has exponent 1 iff it is trivial. (Contributed by Mario Carneiro, 24-Apr-2016)

Ref Expression
Hypotheses gexcl2.1 X = Base G
gexcl2.2 E = gEx G
Assertion gex1 G Mnd E = 1 X 1 𝑜

Proof

Step Hyp Ref Expression
1 gexcl2.1 X = Base G
2 gexcl2.2 E = gEx G
3 simplr G Mnd E = 1 x X E = 1
4 3 oveq1d G Mnd E = 1 x X E G x = 1 G x
5 eqid G = G
6 eqid 0 G = 0 G
7 1 2 5 6 gexid x X E G x = 0 G
8 7 adantl G Mnd E = 1 x X E G x = 0 G
9 1 5 mulg1 x X 1 G x = x
10 9 adantl G Mnd E = 1 x X 1 G x = x
11 4 8 10 3eqtr3rd G Mnd E = 1 x X x = 0 G
12 velsn x 0 G x = 0 G
13 11 12 sylibr G Mnd E = 1 x X x 0 G
14 13 ex G Mnd E = 1 x X x 0 G
15 14 ssrdv G Mnd E = 1 X 0 G
16 1 6 mndidcl G Mnd 0 G X
17 16 adantr G Mnd E = 1 0 G X
18 17 snssd G Mnd E = 1 0 G X
19 15 18 eqssd G Mnd E = 1 X = 0 G
20 fvex 0 G V
21 20 ensn1 0 G 1 𝑜
22 19 21 eqbrtrdi G Mnd E = 1 X 1 𝑜
23 simpl G Mnd X 1 𝑜 G Mnd
24 1nn 1
25 24 a1i G Mnd X 1 𝑜 1
26 9 adantl G Mnd X 1 𝑜 x X 1 G x = x
27 en1eqsn 0 G X X 1 𝑜 X = 0 G
28 16 27 sylan G Mnd X 1 𝑜 X = 0 G
29 28 eleq2d G Mnd X 1 𝑜 x X x 0 G
30 29 biimpa G Mnd X 1 𝑜 x X x 0 G
31 30 12 sylib G Mnd X 1 𝑜 x X x = 0 G
32 26 31 eqtrd G Mnd X 1 𝑜 x X 1 G x = 0 G
33 32 ralrimiva G Mnd X 1 𝑜 x X 1 G x = 0 G
34 1 2 5 6 gexlem2 G Mnd 1 x X 1 G x = 0 G E 1 1
35 23 25 33 34 syl3anc G Mnd X 1 𝑜 E 1 1
36 elfz1eq E 1 1 E = 1
37 35 36 syl G Mnd X 1 𝑜 E = 1
38 22 37 impbida G Mnd E = 1 X 1 𝑜