Metamath Proof Explorer


Theorem gg-expcn

Description: The power function on complex numbers, for fixed exponent N , is continuous. (Contributed by Mario Carneiro, 5-May-2014) (Revised by Mario Carneiro, 23-Aug-2014) Avoid ax-mulf . (Revised by GG, 16-Mar-2025)

Ref Expression
Hypothesis gg-expcn.j J=TopOpenfld
Assertion gg-expcn N0xxNJCnJ

Proof

Step Hyp Ref Expression
1 gg-expcn.j J=TopOpenfld
2 oveq2 n=0xn=x0
3 2 mpteq2dv n=0xxn=xx0
4 3 eleq1d n=0xxnJCnJxx0JCnJ
5 oveq2 n=kxn=xk
6 5 mpteq2dv n=kxxn=xxk
7 6 eleq1d n=kxxnJCnJxxkJCnJ
8 oveq2 n=k+1xn=xk+1
9 8 mpteq2dv n=k+1xxn=xxk+1
10 9 eleq1d n=k+1xxnJCnJxxk+1JCnJ
11 oveq2 n=Nxn=xN
12 11 mpteq2dv n=Nxxn=xxN
13 12 eleq1d n=NxxnJCnJxxNJCnJ
14 exp0 xx0=1
15 14 mpteq2ia xx0=x1
16 1 cnfldtopon JTopOn
17 16 a1i JTopOn
18 1cnd 1
19 17 17 18 cnmptc x1JCnJ
20 19 mptru x1JCnJ
21 15 20 eqeltri xx0JCnJ
22 oveq1 x=nxk+1=nk+1
23 22 cbvmptv xxk+1=nnk+1
24 id nn
25 simpl k0xxkJCnJk0
26 expp1 nk0nk+1=nkn
27 expcl nk0nk
28 ovmul nknnku,vuvn=nkn
29 28 expcom nnknku,vuvn=nkn
30 29 adantr nk0nknku,vuvn=nkn
31 27 30 mpd nk0nku,vuvn=nkn
32 26 31 eqtr4d nk0nk+1=nku,vuvn
33 24 25 32 syl2anr k0xxkJCnJnnk+1=nku,vuvn
34 33 mpteq2dva k0xxkJCnJnnk+1=nnku,vuvn
35 23 34 eqtrid k0xxkJCnJxxk+1=nnku,vuvn
36 16 a1i k0xxkJCnJJTopOn
37 oveq1 x=nxk=nk
38 37 cbvmptv xxk=nnk
39 simpr k0xxkJCnJxxkJCnJ
40 38 39 eqeltrrid k0xxkJCnJnnkJCnJ
41 36 cnmptid k0xxkJCnJnnJCnJ
42 1 mpomulcn u,vuvJ×tJCnJ
43 42 a1i k0xxkJCnJu,vuvJ×tJCnJ
44 36 40 41 43 cnmpt12f k0xxkJCnJnnku,vuvnJCnJ
45 35 44 eqeltrd k0xxkJCnJxxk+1JCnJ
46 45 ex k0xxkJCnJxxk+1JCnJ
47 4 7 10 13 21 46 nn0ind N0xxNJCnJ