Metamath Proof Explorer


Theorem gg-plycn

Description: A polynomial is a continuous function. (Contributed by Mario Carneiro, 23-Jul-2014) Avoid ax-mulf . (Revised by GG, 16-Mar-2025)

Ref Expression
Assertion gg-plycn FPolySF:cn

Proof

Step Hyp Ref Expression
1 eqid coeffF=coeffF
2 eqid degF=degF
3 1 2 coeid FPolySF=zk=0degFcoeffFkzk
4 eqid TopOpenfld=TopOpenfld
5 4 cnfldtopon TopOpenfldTopOn
6 5 a1i FPolySTopOpenfldTopOn
7 fzfid FPolyS0degFFin
8 5 a1i FPolySk0degFTopOpenfldTopOn
9 1 coef3 FPolyScoeffF:0
10 elfznn0 k0degFk0
11 ffvelcdm coeffF:0k0coeffFk
12 9 10 11 syl2an FPolySk0degFcoeffFk
13 8 8 12 cnmptc FPolySk0degFzcoeffFkTopOpenfldCnTopOpenfld
14 10 adantl FPolySk0degFk0
15 4 gg-expcn k0zzkTopOpenfldCnTopOpenfld
16 14 15 syl FPolySk0degFzzkTopOpenfldCnTopOpenfld
17 4 mpomulcn u,vuvTopOpenfld×tTopOpenfldCnTopOpenfld
18 17 a1i FPolySk0degFu,vuvTopOpenfld×tTopOpenfldCnTopOpenfld
19 oveq12 u=coeffFkv=zkuv=coeffFkzk
20 8 13 16 8 8 18 19 cnmpt12 FPolySk0degFzcoeffFkzkTopOpenfldCnTopOpenfld
21 4 6 7 20 fsumcn FPolySzk=0degFcoeffFkzkTopOpenfldCnTopOpenfld
22 3 21 eqeltrd FPolySFTopOpenfldCnTopOpenfld
23 4 cncfcn1 cn=TopOpenfldCnTopOpenfld
24 22 23 eleqtrrdi FPolySF:cn