| Step | Hyp | Ref | Expression | 
						
							| 1 |  | f1ghm0to0.a |  | 
						
							| 2 |  | f1ghm0to0.b |  | 
						
							| 3 |  | f1ghm0to0.n |  | 
						
							| 4 |  | f1ghm0to0.0 |  | 
						
							| 5 | 1 2 3 4 | f1ghm0to0 |  | 
						
							| 6 | 5 | 3expa |  | 
						
							| 7 | 6 | biimpd |  | 
						
							| 8 | 7 | ralrimiva |  | 
						
							| 9 | 1 2 | ghmf |  | 
						
							| 10 | 9 | adantr |  | 
						
							| 11 |  | eqid |  | 
						
							| 12 |  | eqid |  | 
						
							| 13 | 1 11 12 | ghmsub |  | 
						
							| 14 | 13 | 3expb |  | 
						
							| 15 | 14 | adantlr |  | 
						
							| 16 | 15 | eqeq1d |  | 
						
							| 17 |  | fveqeq2 |  | 
						
							| 18 |  | eqeq1 |  | 
						
							| 19 | 17 18 | imbi12d |  | 
						
							| 20 |  | simplr |  | 
						
							| 21 |  | ghmgrp1 |  | 
						
							| 22 | 21 | adantr |  | 
						
							| 23 | 1 11 | grpsubcl |  | 
						
							| 24 | 23 | 3expb |  | 
						
							| 25 | 22 24 | sylan |  | 
						
							| 26 | 19 20 25 | rspcdva |  | 
						
							| 27 | 16 26 | sylbird |  | 
						
							| 28 |  | ghmgrp2 |  | 
						
							| 29 | 28 | ad2antrr |  | 
						
							| 30 | 9 | ad2antrr |  | 
						
							| 31 |  | simprl |  | 
						
							| 32 | 30 31 | ffvelcdmd |  | 
						
							| 33 |  | simprr |  | 
						
							| 34 | 30 33 | ffvelcdmd |  | 
						
							| 35 | 2 4 12 | grpsubeq0 |  | 
						
							| 36 | 29 32 34 35 | syl3anc |  | 
						
							| 37 | 21 | ad2antrr |  | 
						
							| 38 | 1 3 11 | grpsubeq0 |  | 
						
							| 39 | 37 31 33 38 | syl3anc |  | 
						
							| 40 | 27 36 39 | 3imtr3d |  | 
						
							| 41 | 40 | ralrimivva |  | 
						
							| 42 |  | dff13 |  | 
						
							| 43 | 10 41 42 | sylanbrc |  | 
						
							| 44 | 8 43 | impbida |  |