Metamath Proof Explorer


Theorem ghmf1

Description: Two ways of saying a group homomorphism is 1-1 into its codomain. (Contributed by Paul Chapman, 3-Mar-2008) (Revised by Mario Carneiro, 13-Jan-2015)

Ref Expression
Hypotheses ghmf1.x X=BaseS
ghmf1.y Y=BaseT
ghmf1.z 0˙=0S
ghmf1.u U=0T
Assertion ghmf1 FSGrpHomTF:X1-1YxXFx=Ux=0˙

Proof

Step Hyp Ref Expression
1 ghmf1.x X=BaseS
2 ghmf1.y Y=BaseT
3 ghmf1.z 0˙=0S
4 ghmf1.u U=0T
5 3 4 ghmid FSGrpHomTF0˙=U
6 5 ad2antrr FSGrpHomTF:X1-1YxXF0˙=U
7 6 eqeq2d FSGrpHomTF:X1-1YxXFx=F0˙Fx=U
8 simplr FSGrpHomTF:X1-1YxXF:X1-1Y
9 simpr FSGrpHomTF:X1-1YxXxX
10 ghmgrp1 FSGrpHomTSGrp
11 10 ad2antrr FSGrpHomTF:X1-1YxXSGrp
12 1 3 grpidcl SGrp0˙X
13 11 12 syl FSGrpHomTF:X1-1YxX0˙X
14 f1fveq F:X1-1YxX0˙XFx=F0˙x=0˙
15 8 9 13 14 syl12anc FSGrpHomTF:X1-1YxXFx=F0˙x=0˙
16 7 15 bitr3d FSGrpHomTF:X1-1YxXFx=Ux=0˙
17 16 biimpd FSGrpHomTF:X1-1YxXFx=Ux=0˙
18 17 ralrimiva FSGrpHomTF:X1-1YxXFx=Ux=0˙
19 1 2 ghmf FSGrpHomTF:XY
20 19 adantr FSGrpHomTxXFx=Ux=0˙F:XY
21 eqid -S=-S
22 eqid -T=-T
23 1 21 22 ghmsub FSGrpHomTyXzXFy-Sz=Fy-TFz
24 23 3expb FSGrpHomTyXzXFy-Sz=Fy-TFz
25 24 adantlr FSGrpHomTxXFx=Ux=0˙yXzXFy-Sz=Fy-TFz
26 25 eqeq1d FSGrpHomTxXFx=Ux=0˙yXzXFy-Sz=UFy-TFz=U
27 fveqeq2 x=y-SzFx=UFy-Sz=U
28 eqeq1 x=y-Szx=0˙y-Sz=0˙
29 27 28 imbi12d x=y-SzFx=Ux=0˙Fy-Sz=Uy-Sz=0˙
30 simplr FSGrpHomTxXFx=Ux=0˙yXzXxXFx=Ux=0˙
31 10 adantr FSGrpHomTxXFx=Ux=0˙SGrp
32 1 21 grpsubcl SGrpyXzXy-SzX
33 32 3expb SGrpyXzXy-SzX
34 31 33 sylan FSGrpHomTxXFx=Ux=0˙yXzXy-SzX
35 29 30 34 rspcdva FSGrpHomTxXFx=Ux=0˙yXzXFy-Sz=Uy-Sz=0˙
36 26 35 sylbird FSGrpHomTxXFx=Ux=0˙yXzXFy-TFz=Uy-Sz=0˙
37 ghmgrp2 FSGrpHomTTGrp
38 37 ad2antrr FSGrpHomTxXFx=Ux=0˙yXzXTGrp
39 19 ad2antrr FSGrpHomTxXFx=Ux=0˙yXzXF:XY
40 simprl FSGrpHomTxXFx=Ux=0˙yXzXyX
41 39 40 ffvelcdmd FSGrpHomTxXFx=Ux=0˙yXzXFyY
42 simprr FSGrpHomTxXFx=Ux=0˙yXzXzX
43 39 42 ffvelcdmd FSGrpHomTxXFx=Ux=0˙yXzXFzY
44 2 4 22 grpsubeq0 TGrpFyYFzYFy-TFz=UFy=Fz
45 38 41 43 44 syl3anc FSGrpHomTxXFx=Ux=0˙yXzXFy-TFz=UFy=Fz
46 10 ad2antrr FSGrpHomTxXFx=Ux=0˙yXzXSGrp
47 1 3 21 grpsubeq0 SGrpyXzXy-Sz=0˙y=z
48 46 40 42 47 syl3anc FSGrpHomTxXFx=Ux=0˙yXzXy-Sz=0˙y=z
49 36 45 48 3imtr3d FSGrpHomTxXFx=Ux=0˙yXzXFy=Fzy=z
50 49 ralrimivva FSGrpHomTxXFx=Ux=0˙yXzXFy=Fzy=z
51 dff13 F:X1-1YF:XYyXzXFy=Fzy=z
52 20 50 51 sylanbrc FSGrpHomTxXFx=Ux=0˙F:X1-1Y
53 18 52 impbida FSGrpHomTF:X1-1YxXFx=Ux=0˙