Description: Two ways of saying a group homomorphism is 1-1 into its codomain. (Contributed by Paul Chapman, 3-Mar-2008) (Revised by Mario Carneiro, 13-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ghmf1.x | |
|
ghmf1.y | |
||
ghmf1.z | |
||
ghmf1.u | |
||
Assertion | ghmf1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ghmf1.x | |
|
2 | ghmf1.y | |
|
3 | ghmf1.z | |
|
4 | ghmf1.u | |
|
5 | 3 4 | ghmid | |
6 | 5 | ad2antrr | |
7 | 6 | eqeq2d | |
8 | simplr | |
|
9 | simpr | |
|
10 | ghmgrp1 | |
|
11 | 10 | ad2antrr | |
12 | 1 3 | grpidcl | |
13 | 11 12 | syl | |
14 | f1fveq | |
|
15 | 8 9 13 14 | syl12anc | |
16 | 7 15 | bitr3d | |
17 | 16 | biimpd | |
18 | 17 | ralrimiva | |
19 | 1 2 | ghmf | |
20 | 19 | adantr | |
21 | eqid | |
|
22 | eqid | |
|
23 | 1 21 22 | ghmsub | |
24 | 23 | 3expb | |
25 | 24 | adantlr | |
26 | 25 | eqeq1d | |
27 | fveqeq2 | |
|
28 | eqeq1 | |
|
29 | 27 28 | imbi12d | |
30 | simplr | |
|
31 | 10 | adantr | |
32 | 1 21 | grpsubcl | |
33 | 32 | 3expb | |
34 | 31 33 | sylan | |
35 | 29 30 34 | rspcdva | |
36 | 26 35 | sylbird | |
37 | ghmgrp2 | |
|
38 | 37 | ad2antrr | |
39 | 19 | ad2antrr | |
40 | simprl | |
|
41 | 39 40 | ffvelcdmd | |
42 | simprr | |
|
43 | 39 42 | ffvelcdmd | |
44 | 2 4 22 | grpsubeq0 | |
45 | 38 41 43 44 | syl3anc | |
46 | 10 | ad2antrr | |
47 | 1 3 21 | grpsubeq0 | |
48 | 46 40 42 47 | syl3anc | |
49 | 36 45 48 | 3imtr3d | |
50 | 49 | ralrimivva | |
51 | dff13 | |
|
52 | 20 50 51 | sylanbrc | |
53 | 18 52 | impbida | |