| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ghmf1o.x |  | 
						
							| 2 |  | ghmf1o.y |  | 
						
							| 3 |  | ghmgrp2 |  | 
						
							| 4 |  | ghmgrp1 |  | 
						
							| 5 | 3 4 | jca |  | 
						
							| 6 | 5 | adantr |  | 
						
							| 7 |  | f1ocnv |  | 
						
							| 8 | 7 | adantl |  | 
						
							| 9 |  | f1of |  | 
						
							| 10 | 8 9 | syl |  | 
						
							| 11 |  | simpll |  | 
						
							| 12 | 10 | adantr |  | 
						
							| 13 |  | simprl |  | 
						
							| 14 | 12 13 | ffvelcdmd |  | 
						
							| 15 |  | simprr |  | 
						
							| 16 | 12 15 | ffvelcdmd |  | 
						
							| 17 |  | eqid |  | 
						
							| 18 |  | eqid |  | 
						
							| 19 | 1 17 18 | ghmlin |  | 
						
							| 20 | 11 14 16 19 | syl3anc |  | 
						
							| 21 |  | simplr |  | 
						
							| 22 |  | f1ocnvfv2 |  | 
						
							| 23 | 21 13 22 | syl2anc |  | 
						
							| 24 |  | f1ocnvfv2 |  | 
						
							| 25 | 21 15 24 | syl2anc |  | 
						
							| 26 | 23 25 | oveq12d |  | 
						
							| 27 | 20 26 | eqtrd |  | 
						
							| 28 | 11 4 | syl |  | 
						
							| 29 | 1 17 | grpcl |  | 
						
							| 30 | 28 14 16 29 | syl3anc |  | 
						
							| 31 |  | f1ocnvfv |  | 
						
							| 32 | 21 30 31 | syl2anc |  | 
						
							| 33 | 27 32 | mpd |  | 
						
							| 34 | 33 | ralrimivva |  | 
						
							| 35 | 10 34 | jca |  | 
						
							| 36 | 2 1 18 17 | isghm |  | 
						
							| 37 | 6 35 36 | sylanbrc |  | 
						
							| 38 | 1 2 | ghmf |  | 
						
							| 39 | 38 | adantr |  | 
						
							| 40 | 39 | ffnd |  | 
						
							| 41 | 2 1 | ghmf |  | 
						
							| 42 | 41 | adantl |  | 
						
							| 43 | 42 | ffnd |  | 
						
							| 44 |  | dff1o4 |  | 
						
							| 45 | 40 43 44 | sylanbrc |  | 
						
							| 46 | 37 45 | impbida |  |