Metamath Proof Explorer


Theorem ghmf1o

Description: A bijective group homomorphism is an isomorphism. (Contributed by Mario Carneiro, 13-Jan-2015)

Ref Expression
Hypotheses ghmf1o.x X=BaseS
ghmf1o.y Y=BaseT
Assertion ghmf1o FSGrpHomTF:X1-1 ontoYF-1TGrpHomS

Proof

Step Hyp Ref Expression
1 ghmf1o.x X=BaseS
2 ghmf1o.y Y=BaseT
3 ghmgrp2 FSGrpHomTTGrp
4 ghmgrp1 FSGrpHomTSGrp
5 3 4 jca FSGrpHomTTGrpSGrp
6 5 adantr FSGrpHomTF:X1-1 ontoYTGrpSGrp
7 f1ocnv F:X1-1 ontoYF-1:Y1-1 ontoX
8 7 adantl FSGrpHomTF:X1-1 ontoYF-1:Y1-1 ontoX
9 f1of F-1:Y1-1 ontoXF-1:YX
10 8 9 syl FSGrpHomTF:X1-1 ontoYF-1:YX
11 simpll FSGrpHomTF:X1-1 ontoYxYyYFSGrpHomT
12 10 adantr FSGrpHomTF:X1-1 ontoYxYyYF-1:YX
13 simprl FSGrpHomTF:X1-1 ontoYxYyYxY
14 12 13 ffvelcdmd FSGrpHomTF:X1-1 ontoYxYyYF-1xX
15 simprr FSGrpHomTF:X1-1 ontoYxYyYyY
16 12 15 ffvelcdmd FSGrpHomTF:X1-1 ontoYxYyYF-1yX
17 eqid +S=+S
18 eqid +T=+T
19 1 17 18 ghmlin FSGrpHomTF-1xXF-1yXFF-1x+SF-1y=FF-1x+TFF-1y
20 11 14 16 19 syl3anc FSGrpHomTF:X1-1 ontoYxYyYFF-1x+SF-1y=FF-1x+TFF-1y
21 simplr FSGrpHomTF:X1-1 ontoYxYyYF:X1-1 ontoY
22 f1ocnvfv2 F:X1-1 ontoYxYFF-1x=x
23 21 13 22 syl2anc FSGrpHomTF:X1-1 ontoYxYyYFF-1x=x
24 f1ocnvfv2 F:X1-1 ontoYyYFF-1y=y
25 21 15 24 syl2anc FSGrpHomTF:X1-1 ontoYxYyYFF-1y=y
26 23 25 oveq12d FSGrpHomTF:X1-1 ontoYxYyYFF-1x+TFF-1y=x+Ty
27 20 26 eqtrd FSGrpHomTF:X1-1 ontoYxYyYFF-1x+SF-1y=x+Ty
28 11 4 syl FSGrpHomTF:X1-1 ontoYxYyYSGrp
29 1 17 grpcl SGrpF-1xXF-1yXF-1x+SF-1yX
30 28 14 16 29 syl3anc FSGrpHomTF:X1-1 ontoYxYyYF-1x+SF-1yX
31 f1ocnvfv F:X1-1 ontoYF-1x+SF-1yXFF-1x+SF-1y=x+TyF-1x+Ty=F-1x+SF-1y
32 21 30 31 syl2anc FSGrpHomTF:X1-1 ontoYxYyYFF-1x+SF-1y=x+TyF-1x+Ty=F-1x+SF-1y
33 27 32 mpd FSGrpHomTF:X1-1 ontoYxYyYF-1x+Ty=F-1x+SF-1y
34 33 ralrimivva FSGrpHomTF:X1-1 ontoYxYyYF-1x+Ty=F-1x+SF-1y
35 10 34 jca FSGrpHomTF:X1-1 ontoYF-1:YXxYyYF-1x+Ty=F-1x+SF-1y
36 2 1 18 17 isghm F-1TGrpHomSTGrpSGrpF-1:YXxYyYF-1x+Ty=F-1x+SF-1y
37 6 35 36 sylanbrc FSGrpHomTF:X1-1 ontoYF-1TGrpHomS
38 1 2 ghmf FSGrpHomTF:XY
39 38 adantr FSGrpHomTF-1TGrpHomSF:XY
40 39 ffnd FSGrpHomTF-1TGrpHomSFFnX
41 2 1 ghmf F-1TGrpHomSF-1:YX
42 41 adantl FSGrpHomTF-1TGrpHomSF-1:YX
43 42 ffnd FSGrpHomTF-1TGrpHomSF-1FnY
44 dff1o4 F:X1-1 ontoYFFnXF-1FnY
45 40 43 44 sylanbrc FSGrpHomTF-1TGrpHomSF:X1-1 ontoY
46 37 45 impbida FSGrpHomTF:X1-1 ontoYF-1TGrpHomS