Description: A bijective group homomorphism is an isomorphism. (Contributed by Mario Carneiro, 13-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ghmf1o.x | |
|
ghmf1o.y | |
||
Assertion | ghmf1o | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ghmf1o.x | |
|
2 | ghmf1o.y | |
|
3 | ghmgrp2 | |
|
4 | ghmgrp1 | |
|
5 | 3 4 | jca | |
6 | 5 | adantr | |
7 | f1ocnv | |
|
8 | 7 | adantl | |
9 | f1of | |
|
10 | 8 9 | syl | |
11 | simpll | |
|
12 | 10 | adantr | |
13 | simprl | |
|
14 | 12 13 | ffvelcdmd | |
15 | simprr | |
|
16 | 12 15 | ffvelcdmd | |
17 | eqid | |
|
18 | eqid | |
|
19 | 1 17 18 | ghmlin | |
20 | 11 14 16 19 | syl3anc | |
21 | simplr | |
|
22 | f1ocnvfv2 | |
|
23 | 21 13 22 | syl2anc | |
24 | f1ocnvfv2 | |
|
25 | 21 15 24 | syl2anc | |
26 | 23 25 | oveq12d | |
27 | 20 26 | eqtrd | |
28 | 11 4 | syl | |
29 | 1 17 | grpcl | |
30 | 28 14 16 29 | syl3anc | |
31 | f1ocnvfv | |
|
32 | 21 30 31 | syl2anc | |
33 | 27 32 | mpd | |
34 | 33 | ralrimivva | |
35 | 10 34 | jca | |
36 | 2 1 18 17 | isghm | |
37 | 6 35 36 | sylanbrc | |
38 | 1 2 | ghmf | |
39 | 38 | adantr | |
40 | 39 | ffnd | |
41 | 2 1 | ghmf | |
42 | 41 | adantl | |
43 | 42 | ffnd | |
44 | dff1o4 | |
|
45 | 40 43 44 | sylanbrc | |
46 | 37 45 | impbida | |