Metamath Proof Explorer


Theorem ghmplusg

Description: The pointwise sum of two linear functions is linear. (Contributed by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Hypothesis ghmplusg.p +˙=+N
Assertion ghmplusg NAbelFMGrpHomNGMGrpHomNF+˙fGMGrpHomN

Proof

Step Hyp Ref Expression
1 ghmplusg.p +˙=+N
2 eqid BaseM=BaseM
3 eqid BaseN=BaseN
4 eqid +M=+M
5 ghmgrp1 GMGrpHomNMGrp
6 5 3ad2ant3 NAbelFMGrpHomNGMGrpHomNMGrp
7 ghmgrp2 GMGrpHomNNGrp
8 7 3ad2ant3 NAbelFMGrpHomNGMGrpHomNNGrp
9 3 1 grpcl NGrpxBaseNyBaseNx+˙yBaseN
10 9 3expb NGrpxBaseNyBaseNx+˙yBaseN
11 8 10 sylan NAbelFMGrpHomNGMGrpHomNxBaseNyBaseNx+˙yBaseN
12 2 3 ghmf FMGrpHomNF:BaseMBaseN
13 12 3ad2ant2 NAbelFMGrpHomNGMGrpHomNF:BaseMBaseN
14 2 3 ghmf GMGrpHomNG:BaseMBaseN
15 14 3ad2ant3 NAbelFMGrpHomNGMGrpHomNG:BaseMBaseN
16 fvexd NAbelFMGrpHomNGMGrpHomNBaseMV
17 inidm BaseMBaseM=BaseM
18 11 13 15 16 16 17 off NAbelFMGrpHomNGMGrpHomNF+˙fG:BaseMBaseN
19 2 4 1 ghmlin FMGrpHomNxBaseMyBaseMFx+My=Fx+˙Fy
20 19 3expb FMGrpHomNxBaseMyBaseMFx+My=Fx+˙Fy
21 20 3ad2antl2 NAbelFMGrpHomNGMGrpHomNxBaseMyBaseMFx+My=Fx+˙Fy
22 2 4 1 ghmlin GMGrpHomNxBaseMyBaseMGx+My=Gx+˙Gy
23 22 3expb GMGrpHomNxBaseMyBaseMGx+My=Gx+˙Gy
24 23 3ad2antl3 NAbelFMGrpHomNGMGrpHomNxBaseMyBaseMGx+My=Gx+˙Gy
25 21 24 oveq12d NAbelFMGrpHomNGMGrpHomNxBaseMyBaseMFx+My+˙Gx+My=Fx+˙Fy+˙Gx+˙Gy
26 simpl1 NAbelFMGrpHomNGMGrpHomNxBaseMyBaseMNAbel
27 ablcmn NAbelNCMnd
28 26 27 syl NAbelFMGrpHomNGMGrpHomNxBaseMyBaseMNCMnd
29 13 ffvelcdmda NAbelFMGrpHomNGMGrpHomNxBaseMFxBaseN
30 29 adantrr NAbelFMGrpHomNGMGrpHomNxBaseMyBaseMFxBaseN
31 13 ffvelcdmda NAbelFMGrpHomNGMGrpHomNyBaseMFyBaseN
32 31 adantrl NAbelFMGrpHomNGMGrpHomNxBaseMyBaseMFyBaseN
33 15 ffvelcdmda NAbelFMGrpHomNGMGrpHomNxBaseMGxBaseN
34 33 adantrr NAbelFMGrpHomNGMGrpHomNxBaseMyBaseMGxBaseN
35 15 ffvelcdmda NAbelFMGrpHomNGMGrpHomNyBaseMGyBaseN
36 35 adantrl NAbelFMGrpHomNGMGrpHomNxBaseMyBaseMGyBaseN
37 3 1 cmn4 NCMndFxBaseNFyBaseNGxBaseNGyBaseNFx+˙Fy+˙Gx+˙Gy=Fx+˙Gx+˙Fy+˙Gy
38 28 30 32 34 36 37 syl122anc NAbelFMGrpHomNGMGrpHomNxBaseMyBaseMFx+˙Fy+˙Gx+˙Gy=Fx+˙Gx+˙Fy+˙Gy
39 25 38 eqtrd NAbelFMGrpHomNGMGrpHomNxBaseMyBaseMFx+My+˙Gx+My=Fx+˙Gx+˙Fy+˙Gy
40 13 ffnd NAbelFMGrpHomNGMGrpHomNFFnBaseM
41 40 adantr NAbelFMGrpHomNGMGrpHomNxBaseMyBaseMFFnBaseM
42 15 ffnd NAbelFMGrpHomNGMGrpHomNGFnBaseM
43 42 adantr NAbelFMGrpHomNGMGrpHomNxBaseMyBaseMGFnBaseM
44 fvexd NAbelFMGrpHomNGMGrpHomNxBaseMyBaseMBaseMV
45 2 4 grpcl MGrpxBaseMyBaseMx+MyBaseM
46 45 3expb MGrpxBaseMyBaseMx+MyBaseM
47 6 46 sylan NAbelFMGrpHomNGMGrpHomNxBaseMyBaseMx+MyBaseM
48 fnfvof FFnBaseMGFnBaseMBaseMVx+MyBaseMF+˙fGx+My=Fx+My+˙Gx+My
49 41 43 44 47 48 syl22anc NAbelFMGrpHomNGMGrpHomNxBaseMyBaseMF+˙fGx+My=Fx+My+˙Gx+My
50 simprl NAbelFMGrpHomNGMGrpHomNxBaseMyBaseMxBaseM
51 fnfvof FFnBaseMGFnBaseMBaseMVxBaseMF+˙fGx=Fx+˙Gx
52 41 43 44 50 51 syl22anc NAbelFMGrpHomNGMGrpHomNxBaseMyBaseMF+˙fGx=Fx+˙Gx
53 simprr NAbelFMGrpHomNGMGrpHomNxBaseMyBaseMyBaseM
54 fnfvof FFnBaseMGFnBaseMBaseMVyBaseMF+˙fGy=Fy+˙Gy
55 41 43 44 53 54 syl22anc NAbelFMGrpHomNGMGrpHomNxBaseMyBaseMF+˙fGy=Fy+˙Gy
56 52 55 oveq12d NAbelFMGrpHomNGMGrpHomNxBaseMyBaseMF+˙fGx+˙F+˙fGy=Fx+˙Gx+˙Fy+˙Gy
57 39 49 56 3eqtr4d NAbelFMGrpHomNGMGrpHomNxBaseMyBaseMF+˙fGx+My=F+˙fGx+˙F+˙fGy
58 2 3 4 1 6 8 18 57 isghmd NAbelFMGrpHomNGMGrpHomNF+˙fGMGrpHomN