Metamath Proof Explorer


Theorem golem1

Description: Lemma for Godowski's equation. (Contributed by NM, 10-Nov-2002) (New usage is discouraged.)

Ref Expression
Hypotheses golem1.1 AC
golem1.2 BC
golem1.3 CC
golem1.4 F=AAB
golem1.5 G=BBC
golem1.6 H=CCA
golem1.7 D=BBA
golem1.8 R=CCB
golem1.9 S=AAC
Assertion golem1 fStatesfF+fG+fH=fD+fR+fS

Proof

Step Hyp Ref Expression
1 golem1.1 AC
2 golem1.2 BC
3 golem1.3 CC
4 golem1.4 F=AAB
5 golem1.5 G=BBC
6 golem1.6 H=CCA
7 golem1.7 D=BBA
8 golem1.8 R=CCB
9 golem1.9 S=AAC
10 1 choccli AC
11 stcl fStatesACfA
12 10 11 mpi fStatesfA
13 12 recnd fStatesfA
14 2 choccli BC
15 stcl fStatesBCfB
16 14 15 mpi fStatesfB
17 16 recnd fStatesfB
18 3 choccli CC
19 stcl fStatesCCfC
20 18 19 mpi fStatesfC
21 20 recnd fStatesfC
22 13 17 21 addassd fStatesfA+fB+fC=fA+fB+fC
23 17 21 addcld fStatesfB+fC
24 13 23 addcomd fStatesfA+fB+fC=fB+fC+fA
25 22 24 eqtrd fStatesfA+fB+fC=fB+fC+fA
26 25 oveq1d fStatesfA+fB+fC+fAB+fBC+fCA=fB+fC+fA+fAB+fBC+fCA
27 13 17 addcld fStatesfA+fB
28 1 2 chincli ABC
29 stcl fStatesABCfAB
30 28 29 mpi fStatesfAB
31 30 recnd fStatesfAB
32 2 3 chincli BCC
33 stcl fStatesBCCfBC
34 32 33 mpi fStatesfBC
35 34 recnd fStatesfBC
36 31 35 addcld fStatesfAB+fBC
37 3 1 chincli CAC
38 stcl fStatesCACfCA
39 37 38 mpi fStatesfCA
40 39 recnd fStatesfCA
41 27 36 21 40 add4d fStatesfA+fB+fAB+fBC+fC+fCA=fA+fB+fC+fAB+fBC+fCA
42 23 36 13 40 add4d fStatesfB+fC+fAB+fBC+fA+fCA=fB+fC+fA+fAB+fBC+fCA
43 26 41 42 3eqtr4d fStatesfA+fB+fAB+fBC+fC+fCA=fB+fC+fAB+fBC+fA+fCA
44 13 31 17 35 add4d fStatesfA+fAB+fB+fBC=fA+fB+fAB+fBC
45 44 oveq1d fStatesfA+fAB+fB+fBC+fC+fCA=fA+fB+fAB+fBC+fC+fCA
46 17 31 21 35 add4d fStatesfB+fAB+fC+fBC=fB+fC+fAB+fBC
47 46 oveq1d fStatesfB+fAB+fC+fBC+fA+fCA=fB+fC+fAB+fBC+fA+fCA
48 43 45 47 3eqtr4d fStatesfA+fAB+fB+fBC+fC+fCA=fB+fAB+fC+fBC+fA+fCA
49 1 2 stji1i fStatesfAAB=fA+fAB
50 2 3 stji1i fStatesfBBC=fB+fBC
51 49 50 oveq12d fStatesfAAB+fBBC=fA+fAB+fB+fBC
52 3 1 stji1i fStatesfCCA=fC+fCA
53 51 52 oveq12d fStatesfAAB+fBBC+fCCA=fA+fAB+fB+fBC+fC+fCA
54 2 1 stji1i fStatesfBBA=fB+fBA
55 incom BA=AB
56 55 fveq2i fBA=fAB
57 56 oveq2i fB+fBA=fB+fAB
58 54 57 eqtrdi fStatesfBBA=fB+fAB
59 3 2 stji1i fStatesfCCB=fC+fCB
60 incom CB=BC
61 60 fveq2i fCB=fBC
62 61 oveq2i fC+fCB=fC+fBC
63 59 62 eqtrdi fStatesfCCB=fC+fBC
64 58 63 oveq12d fStatesfBBA+fCCB=fB+fAB+fC+fBC
65 1 3 stji1i fStatesfAAC=fA+fAC
66 incom AC=CA
67 66 fveq2i fAC=fCA
68 67 oveq2i fA+fAC=fA+fCA
69 65 68 eqtrdi fStatesfAAC=fA+fCA
70 64 69 oveq12d fStatesfBBA+fCCB+fAAC=fB+fAB+fC+fBC+fA+fCA
71 48 53 70 3eqtr4d fStatesfAAB+fBBC+fCCA=fBBA+fCCB+fAAC
72 4 fveq2i fF=fAAB
73 5 fveq2i fG=fBBC
74 72 73 oveq12i fF+fG=fAAB+fBBC
75 6 fveq2i fH=fCCA
76 74 75 oveq12i fF+fG+fH=fAAB+fBBC+fCCA
77 7 fveq2i fD=fBBA
78 8 fveq2i fR=fCCB
79 77 78 oveq12i fD+fR=fBBA+fCCB
80 9 fveq2i fS=fAAC
81 79 80 oveq12i fD+fR+fS=fBBA+fCCB+fAAC
82 71 76 81 3eqtr4g fStatesfF+fG+fH=fD+fR+fS