Metamath Proof Explorer


Theorem grothac

Description: The Tarski-Grothendieck Axiom implies the Axiom of Choice (in the form of cardeqv ). This can be put in a more conventional form via ween and dfac8 . Note that the mere existence of strongly inaccessible cardinals doesn't imply AC, but rather the particular form of the Tarski-Grothendieck axiom (see http://www.cs.nyu.edu/pipermail/fom/2008-March/012783.html ). (Contributed by Mario Carneiro, 19-Apr-2013) (New usage is discouraged.)

Ref Expression
Assertion grothac domcard=V

Proof

Step Hyp Ref Expression
1 pweq x=y𝒫x=𝒫y
2 1 sseq1d x=y𝒫xu𝒫yu
3 1 eleq1d x=y𝒫xu𝒫yu
4 2 3 anbi12d x=y𝒫xu𝒫xu𝒫yu𝒫yu
5 4 rspcva yuxu𝒫xu𝒫xu𝒫yu𝒫yu
6 5 simpld yuxu𝒫xu𝒫xu𝒫yu
7 rabss x𝒫u|xuux𝒫uxuxu
8 7 biimpri x𝒫uxuxux𝒫u|xuu
9 vex yV
10 9 canth2 y𝒫y
11 sdomdom y𝒫yy𝒫y
12 10 11 ax-mp y𝒫y
13 ssdomg uV𝒫yu𝒫yu
14 13 elv 𝒫yu𝒫yu
15 domtr y𝒫y𝒫yuyu
16 12 14 15 sylancr 𝒫yuyu
17 vex uV
18 tskwe uVx𝒫u|xuuudomcard
19 17 18 mpan x𝒫u|xuuudomcard
20 numdom udomcardyuydomcard
21 20 expcom yuudomcardydomcard
22 16 19 21 syl2im 𝒫yux𝒫u|xuuydomcard
23 6 8 22 syl2im yuxu𝒫xu𝒫xux𝒫uxuxuydomcard
24 23 3impia yuxu𝒫xu𝒫xux𝒫uxuxuydomcard
25 axgroth6 uyuxu𝒫xu𝒫xux𝒫uxuxu
26 24 25 exlimiiv ydomcard
27 26 9 2th ydomcardyV
28 27 eqriv domcard=V