Metamath Proof Explorer


Theorem tskwe

Description: A Tarski set is well-orderable. (Contributed by Mario Carneiro, 19-Apr-2013) (Revised by Mario Carneiro, 29-Apr-2015)

Ref Expression
Assertion tskwe A V x 𝒫 A | x A A A dom card

Proof

Step Hyp Ref Expression
1 pwexg A V 𝒫 A V
2 rabexg 𝒫 A V x 𝒫 A | x A V
3 incom x 𝒫 A | x A On = On x 𝒫 A | x A
4 inex1g x 𝒫 A | x A V x 𝒫 A | x A On V
5 3 4 eqeltrrid x 𝒫 A | x A V On x 𝒫 A | x A V
6 inss1 On x 𝒫 A | x A On
7 6 sseli z On x 𝒫 A | x A z On
8 onelon z On y z y On
9 8 ancoms y z z On y On
10 7 9 sylan2 y z z On x 𝒫 A | x A y On
11 onelss z On y z y z
12 11 impcom y z z On y z
13 7 12 sylan2 y z z On x 𝒫 A | x A y z
14 inss2 On x 𝒫 A | x A x 𝒫 A | x A
15 14 sseli z On x 𝒫 A | x A z x 𝒫 A | x A
16 breq1 x = z x A z A
17 16 elrab z x 𝒫 A | x A z 𝒫 A z A
18 15 17 sylib z On x 𝒫 A | x A z 𝒫 A z A
19 18 simpld z On x 𝒫 A | x A z 𝒫 A
20 19 elpwid z On x 𝒫 A | x A z A
21 20 adantl y z z On x 𝒫 A | x A z A
22 13 21 sstrd y z z On x 𝒫 A | x A y A
23 velpw y 𝒫 A y A
24 22 23 sylibr y z z On x 𝒫 A | x A y 𝒫 A
25 vex z V
26 ssdomg z V y z y z
27 25 13 26 mpsyl y z z On x 𝒫 A | x A y z
28 18 simprd z On x 𝒫 A | x A z A
29 28 adantl y z z On x 𝒫 A | x A z A
30 domsdomtr y z z A y A
31 27 29 30 syl2anc y z z On x 𝒫 A | x A y A
32 breq1 x = y x A y A
33 32 elrab y x 𝒫 A | x A y 𝒫 A y A
34 24 31 33 sylanbrc y z z On x 𝒫 A | x A y x 𝒫 A | x A
35 10 34 elind y z z On x 𝒫 A | x A y On x 𝒫 A | x A
36 35 gen2 y z y z z On x 𝒫 A | x A y On x 𝒫 A | x A
37 dftr2 Tr On x 𝒫 A | x A y z y z z On x 𝒫 A | x A y On x 𝒫 A | x A
38 36 37 mpbir Tr On x 𝒫 A | x A
39 ordon Ord On
40 trssord Tr On x 𝒫 A | x A On x 𝒫 A | x A On Ord On Ord On x 𝒫 A | x A
41 38 6 39 40 mp3an Ord On x 𝒫 A | x A
42 elong On x 𝒫 A | x A V On x 𝒫 A | x A On Ord On x 𝒫 A | x A
43 41 42 mpbiri On x 𝒫 A | x A V On x 𝒫 A | x A On
44 1 2 5 43 4syl A V On x 𝒫 A | x A On
45 44 adantr A V x 𝒫 A | x A A On x 𝒫 A | x A On
46 simpr A V x 𝒫 A | x A A x 𝒫 A | x A A
47 14 46 sstrid A V x 𝒫 A | x A A On x 𝒫 A | x A A
48 ssdomg A V On x 𝒫 A | x A A On x 𝒫 A | x A A
49 48 adantr A V x 𝒫 A | x A A On x 𝒫 A | x A A On x 𝒫 A | x A A
50 47 49 mpd A V x 𝒫 A | x A A On x 𝒫 A | x A A
51 ordirr Ord On x 𝒫 A | x A ¬ On x 𝒫 A | x A On x 𝒫 A | x A
52 41 51 mp1i A V x 𝒫 A | x A A ¬ On x 𝒫 A | x A On x 𝒫 A | x A
53 44 3ad2ant1 A V x 𝒫 A | x A A On x 𝒫 A | x A A On x 𝒫 A | x A On
54 elpw2g A V On x 𝒫 A | x A 𝒫 A On x 𝒫 A | x A A
55 54 adantr A V x 𝒫 A | x A A On x 𝒫 A | x A 𝒫 A On x 𝒫 A | x A A
56 47 55 mpbird A V x 𝒫 A | x A A On x 𝒫 A | x A 𝒫 A
57 56 3adant3 A V x 𝒫 A | x A A On x 𝒫 A | x A A On x 𝒫 A | x A 𝒫 A
58 simp3 A V x 𝒫 A | x A A On x 𝒫 A | x A A On x 𝒫 A | x A A
59 nfcv _ x On
60 nfrab1 _ x x 𝒫 A | x A
61 59 60 nfin _ x On x 𝒫 A | x A
62 nfcv _ x 𝒫 A
63 nfcv _ x
64 nfcv _ x A
65 61 63 64 nfbr x On x 𝒫 A | x A A
66 breq1 x = On x 𝒫 A | x A x A On x 𝒫 A | x A A
67 61 62 65 66 elrabf On x 𝒫 A | x A x 𝒫 A | x A On x 𝒫 A | x A 𝒫 A On x 𝒫 A | x A A
68 57 58 67 sylanbrc A V x 𝒫 A | x A A On x 𝒫 A | x A A On x 𝒫 A | x A x 𝒫 A | x A
69 53 68 elind A V x 𝒫 A | x A A On x 𝒫 A | x A A On x 𝒫 A | x A On x 𝒫 A | x A
70 69 3expia A V x 𝒫 A | x A A On x 𝒫 A | x A A On x 𝒫 A | x A On x 𝒫 A | x A
71 52 70 mtod A V x 𝒫 A | x A A ¬ On x 𝒫 A | x A A
72 bren2 On x 𝒫 A | x A A On x 𝒫 A | x A A ¬ On x 𝒫 A | x A A
73 50 71 72 sylanbrc A V x 𝒫 A | x A A On x 𝒫 A | x A A
74 isnumi On x 𝒫 A | x A On On x 𝒫 A | x A A A dom card
75 45 73 74 syl2anc A V x 𝒫 A | x A A A dom card